
CatDB: Data-catalog-guided, LLM-based Generation of
Data-centric ML Pipelines

Saeed Fathollahzadeh
Concordia University

saeed.fathollahzadeh@concordia.ca

Essam Mansour
Concordia University

essam.mansour@concordia.ca

Matthias Boehm
Technische Universität Berlin
matthias.boehm@tu-berlin.de

ABSTRACT
Data-centric machine learning (ML) pipelines extend traditional
ML pipelines—of feature transformations, hyper-parameter tun-
ing, and model training—by additional pre-processing steps for
data cleaning, data augmentation, and feature engineering to create
high-quality data with good coverage. Finding effective data-centric
ML pipelines is still a labor- and compute-intensive process though.
While AutoML tools use effective search strategies, they struggle
to scale with large datasets. Large language models (LLMs) show
promise for code generation but face challenges in generating data-
centric ML pipelines due to private datasets not seen during training,
complex pre-processing requirements, and the need for mitigating
hallucinations. These demands exceed typical code generation as
it requires actions tailored to the characteristics and requirements
of a particular dataset. This paper introduces CatDB, a comprehen-
sive, LLM-based system for generating effective, error-free, and
efficient data-centric ML pipelines. CatDB leverages data catalog
information and refined metadata to dynamically create dataset-
specific rules (instructions) to guide the LLM. Moreover, CatDB
includes a robust mechanism for automatic validation and error
handling of the generated pipeline. Our experimental results show
that CatDB reliably generates effective ML pipelines across diverse
datasets, achieving accuracy comparable to or better than existing
LLM-based systems, standalone AutoML tools, and combined work-
flows of data cleaning and AutoML tools, while delivering up to
orders of magnitude faster performance on large datasets.

PVLDB Reference Format:
Saeed Fathollahzadeh, Essam Mansour, and Matthias Boehm. CatDB:
Data-catalog-guided, LLM-based Generation of Data-centric ML Pipelines.
PVLDB, 18(8): 2639 - 2652, 2025.
doi:10.14778/3742728.3742754

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/CoDS-GCS/CatDB.git.

1 INTRODUCTION
Modern data-driven applications increasingly rely on machine
learning (ML) for cost-effective intelligence augmentation and in-
telligent infrastructure in various domains, such as health-care,
finance, transportation, and production [39]. The traditional data

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 8 ISSN 2150-8097.
doi:10.14778/3742728.3742754

Salary dataset: comma-separated CSV file

Target feature: "Salary"

Experience Skills Gender Address Salary

12 Months SQL,Java F 7050 CA 100

two years JavaScript Female TX 7871 150

36 months C/C++,.Net M Texas 300

3 Years JS,CPP,SQL Female 7871 310

one Year Python Male CA 200

2 Years C#,Java 0 TX 175

1 Load Dataset

2 Deduplicate Categorical Values
Experience: Replace(12 Months:1 year, ..)

Skills: Replace(CPP:C++, .Net:C#, ..)

Gender: Replace(F:Female, M:Male)

3 Decompose Features

Address: Split to State and ZipCode

4 Infer Feature Type
Skills: Set as List Type

5 Feature Selection

Address: Keep ZipCode & Remove State

6 Feature Hashing

7 Train Model

1 Load Dataset

2 Hash Categorical Feature
Gender: {M, F, Male, Female}

3 Train Model

Accuracy = 91.8%Accuracy = 39.2%

Pipeline DAG with CatDB & LLM

Pipeline DAG with
Metadata & LLM

Figure 1: Comparison of prompt engineering for data-centric
ML pipelines: [Metadata-only & LLM] versus [CatDB & LLM].
While the former struggles (39.2%), CatDB customizes in-
structions based on data characteristics to guide the LLM.

science lifecycle is exploratory and includes formulating various
hypotheses, integrating the relevant data, as well as developing and
evaluating multiple predictive ML pipelines [16, 21].

Data-centric ML Pipelines [57] extend traditional ML pipelines
[1, 7] by additional pre-processing steps for data validation [68],
data cleaning [30, 48, 74], data augmentation [22, 45], and feature
engineering [63, 70]. Creating a high-quality dataset with good cov-
erage often yields better accuracy than advanced ML models [53]
or neural architecture search [60]. Even the original AlexNet paper
[45] that won the ImageNet 2012 challenge and re-ignited research
on deep neural networks (DNNs) heavily relied on data augmen-
tation. Unfortunately, devising effective data-centric ML pipelines
is a labor- and compute-intensive process. For example, tuning
data augmentation [22] or data cleaning [74] pipelines requires
expensive reinforcement learning or evolutionary algorithms.

Limitations of LLMs and AutoML Tools: LLMs, such as GPT-
4 and Gemini-2, are increasingly utilized for tasks like code gen-
eration and data wrangling [55]. AutoML tools optimize feature
selection and model tuning [24, 27, 46], but struggle to scale with
large datasets due to time-intensive data analysis and the complex-
ity of hyper-parameter search spaces. In contrast, LLMs generalize
across diverse coding tasks and adapt ML pipelines dynamically.
For well-known datasets, such as Titanic, LLMs like GPT-4 and
Gemini-2 generate accurate and effective ML pipelines even with-
out explicit dataset characteristics in the prompt. Readers can test
this by prompting an LLM with: "Generate a data science pipeline
for the Titanic dataset." Since Titanic is a widely used benchmark
dataset that LLMs are typically exposed to during training, they can
retrieve and apply relevant pre-processing steps, feature engineer-
ing, and model choices with high accuracy. However, LLMs struggle

https://doi.org/10.14778/3742728.3742754
https://github.com/CoDS-GCS/CatDB.git
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3742728.3742754

Table #1
𝑐1 𝑐2 ...
1 a ...
2 - ...
...

Table #2
𝑐1 𝑐2 ...
A 0 ..
B 1 ...
...

.......

Table #N
𝑐1 𝑐2 ... target (y)
1 A ... Yes
2 0 ... No
3 - ... null
...

User Descriptions:

X Task Description
4 Dataset Description

Data Profiling:

¨ Extract Dependencies
¡ Profile Raw Data

LLM

Refine
Feature Types

Deduplicate
Values

Chain Prompt

Select Top-K Features

� Infer Instructions (R)
� Project Metadata (S)
� Prompt Template (T)

Single

Prompt Generator

Features =
𝛽⋃
𝑖=1

𝐺𝑖

Preprocessing Feature Engineering Model Selection

� Infer R𝑖 , Project S𝑖 , and Select T𝑖

Prompt 1

Prompt 𝛽

Prompt 1

Prompt 𝛽

Model
Selection
Prompt

Chain Prompt Generator

𝛽 > 1

𝛽 = 1 LLM

Raw Pipeline Code

Parse & Compile

Execute

Error

Error

Raw Dataset (D) Data Catalog Prompt Construction Manage Pipeline (P)

Figure 2: Data-centric ML pipeline generation in CatDB with two variants: Single Prompt Generator (CatDB) and Chain Prompt
Generator (CatDB Chain). CatDB Chain is more effective for large datasets to overcome LLM’s limited context length.

with unseen datasets due to a lack of prior exposure, as illustrated
in Figure 1 with [Metadata-only & LLM]. In such cases, LLMs fail
to infer dataset-specific pre-processing steps, hallucinate incorrect
features [40], or misinterpret data structures. Unlike standard code
generation, ML pipeline creation requires dataset-aware reasoning,
which existing LLMs and AI code generation tools [54, 64] are not
optimized for. To overcome these limitations, two main approaches
are used: fine-tuning and prompt engineering. Fine-tuning LLMs
could improve their ability to generate relevant pipelines but is
costly and often impractical. A more feasible alternative is struc-
tured prompt engineering, where dataset metadata (e.g., feature
types, missing value statistics) is incorporated into prompts. A
key challenge, however, is dynamically curating dataset-specific
instructions that guide the LLM in applying the right data science
actions to the given dataset. Refining metadata and curating these
instructions effectively remains challenging. By overcoming these
challenges, LLMs can offer a scalable approach to automating the
generation of data-centric ML pipelines, reducing manual effort.

New Opportunity – Data Catalogs: Data catalogs, such as
Gaia-X ecosystem [76], Apache Atlas [11], and Google dataset
search [14, 17, 32], can help bridge the gap in overcoming the re-
maining LLM limitations. In addition to metadata (e.g., schema) and
provenance information (e.g., origin), these catalogs also store data
characteristics and profiling information [9], which can be used
to guide LLMs in tailoring pipelines to the specific needs of each
dataset. However, remaining challenges include the need for meta-
data refinements and dataset-specific instructions that can identify
relevant information for specific stages of the pipeline generation.

CatDB Overview: We introduce CatDB, a zero-shot in-context
learning (ICL) approach to generate high-performance, data-centric
ML pipelines in Python using LLMs. As an ICL approach, CatDB
extracts refined data catalog details to craft dataset-specific in-
structions for data science pipeline stages. By adopting a zero-shot
approach, CatDB eliminates the need for task-specific examples.
CatDB profiles the input dataset, builds a unified data catalog, and
integrates metadata and instructions into LLM prompts, as shown
in Figure 2. To avoid manual labeling, CatDB uses LLMs to infer
feature types (e.g., categorical or list) over basic types like string
and refines metadata by cleaning distinct values. Using this catalog,
CatDB splits pipeline creation into coding tasks—such as handling
missing values, scaling features, and training classifiers—expressed

as tailored instructions tied to the metadata. This approach over-
comes LLM limitations and boosts coding efficiency. To handle
errors (syntactic and runtime) from LLM hallucinations, CatDB
auto-validates and fixes pipelines using a knowledge base of er-
ror traces from diverse datasets. The error management improves
reliability, scalability, and performance across domains.

Contributions: Our primary contribution is CatDB, a fully au-
tomated system that leverages data catalogs and LLMs to generate
effective data-centric ML pipelines. Our key contributions are:
• Data-Catalog-Guided ML Pipeline Generation: We present an

end-to-end overview of CatDB that integrates data catalogs
and LLMs to create data-centric ML pipelines in Section 2.

• Prompt Construction: We introduce methods for incorporating
data catalog information, refined metadata, and rules into
LLM prompts in Section 3.

• Pipeline Generation: We outline the process for generating
pipelines using LLMs, including error handling, an error traces
dataset, and cost analysis, covered in Section 4.

• Experiments: We provide results and insights from testing
CatDB with 20 diverse datasets (up to 19 tables, 30 million
rows, and 478 columns), state-of-the-art baseline systems
(CAAFE [37], AIDE [69], AutoGen [82], H2O [46], FLAML [80],
and Auto-Sklearn2 [25]) as well as different LLMs (commercial
GPT-4o [59] or Gemini-pro-1.5 [77], and open-source Llama-
3 [10]) in Section 5. CatDB yields accuracy close to or better
than existing LLM-based and AutoML tools, with performance
up to orders of magnitude faster on large datasets.

2 CATDB SYSTEM OVERVIEW
CatDB, an zero-shot, in-context learning (ICL) approach, generates
detailed dataset-specific instructions to guide LLMs in generat-
ing data-centric ML pipelines. CatDB stands for Catalog-Driven
Builder, profiles the dataset, and refines data catalog information
for more precise instructions, as shown in Figure 1, steps 1-7. This
approach achieves 91.8% accuracy while eliminating the need for
task-specific examples (few-shot learning) across pipeline stages.
Figure 3 shows an example constructed prompt and generated
pipeline by OpenAI GPT-4o for the Salary dataset.

Notation: Given a tabular datasetD (of categorical or numerical
features) and an ML-task (such as classification or regression), we
aim to generate a data-centric ML pipeline 𝑃 that maximizes the

Sy
st

em
Ru

le
s

Ca
ta

lo
g

D
at

a

Task: Generate a data science pipeline in Python 3.10.

Input: A dataset in CSV format, a schema that describes the columns and data types of the dataset,
and a data profiling info that summarizes the statistics and quality of the dataset.

Output: A pipeline code that performs the following steps:

#1: Import the necessary libraries and modules.

#2: Load the training and test datasets. For the training data, utilize the variable
"train_data.csv", and for the test data, employ the variable "test_data.csv".

#3: The user will provide the Schema, and Data Profiling Info of the dataset with columns
appropriately named as attributes.

#4: Perform missing value imputation for features ’Address’ and ’Zip’.

#5: Perform feature extraction (dataset contains categorical values).

#6: Perform feature selection (redundant columns e.g., ’Address’ and ’Zip’).

#7: Select an appropriate ML algorithm.

#8: Assign a default value to a particular hyperparameter.

#9: Evaluate the model.

Dataset Description: A The dataset was obtained from multiple sources, including surveys, job
posting sites, and other publicly available sources.A total of 6704 data points were collected.The
dataset included fivevariables: age, experience, job role, and education level and salary.

Schema, and Data Profiling Info:

Experience (string), distinct [60%], missing [0%], categorical-vals [1 year, 2 years, 3 years]
Gender (string), distinct [40%], missing [0%], categorical-vals [Male, Female]
Address (string), distinct [40%], missing [20%], categorical-vals [CA, TX]
Zip (string), distinct [40%], missing [40%], categorical-vals [7050, 7871]

Salary (int, target feature), min-max vals [100, 310], total-vals [5]

Categorical Features: Experience, Gender, Address, Zip

1: import pandas as pd
2: from sklearn.impute import SimpleImputer
3: from sklearn.preprocessing import OneHotEncoder
4: from sklearn.compose import ColumnTransformer
5: from sklearn.pipeline import Pipeline
6: from sklearn.ensemble import RandomForestRegressor
7: from sklearn.metrics import r2_score

8: train_data = pd.read_csv("train_data.csv")
9: test_data = pd.read_csv("test_data.csv")

10: categorical_features = ["Experience", "Gender", "Address", "Zip"]
11: categorical_transformer = Pipeline(steps=[

("imputer", SimpleImputer(strategy="most_frequent")),
("onehot", OneHotEncoder(handle_unknown="ignore"))])

12: preprocessor = ColumnTransformer(
transformers = [("cat", categorical_transformer, categorical_features)],
remainder="drop")

13: model = RandomForestRegressor(n_estimators=100, random_state=42)
14: pipeline = Pipeline(steps=[("preprocessor", preprocessor), ("model", model)])

15: X_train = train_data.drop("Salary", axis=1)
16: y_train = train_data["Salary"]
17: X_test = test_data.drop("Salary", axis=1)
18: y_test = test_data["Salary"]

19: pipeline.fit(X_train, y_train)
20: y_test_pred = pipeline.predict(X_test)

21: test_r2 = r2_score(y_test, y_test_pred)

22: print(f"Test 𝑅2: {test_r2}")

+

+

Figure 3: An example CatDB-generated prompt (instructions and refined metadata) for the Salary dataset, along with the
resulting pipeline. Our dataset-specific instructions guide the LLM in generating code based on our refined metadata analysis.

task-specific accuracy on validation data. In detail, the dataset D =

{(X𝑖 , y𝑖)}𝑛𝑖=1 comprises rows of 𝑑-dimensional feature vectors X𝑖

and corresponding labels y𝑖 . For classification, y𝑖 is categorical
(either binary or multi-class), whereas for regression, y𝑖 is numeric.
The column names are 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑑 } of type string.

We split the problem of data-catalog-guided, LLM-based genera-
tion of data-centric ML pipelines into three sub-problems to facilitate
debuggability and extensibility, as shown in Figure 2.

Data Profiling: If metadata is unavailable, CatDB profiles the
dataset to obtain basic metadata. For every column, we extract the
schema (column name and data type), number of distinct values,
number of missing values, basic statistics (e.g., min/max, median),
and feature types (e.g., categorical, list). Additionally, we leverage
LLMs to refine and verify feature types and clean categorical values.

Prompt Construction: CatDB generates LLM prompts by com-
bining data catalog information in various ways (Table 1). We cre-
ate structured prompts for data pre-processing, feature engineering,
model selection, and hyper-parameter tuning using relevant meta-
data. Each prompt includes an instruction for a coding task in the
form of rule messages (R) to guide the output and schema mes-
sages (S) with catalog details. These messages are integrated into
an LLM-specific prompt template T, which can be a single prompt
(𝛽 = 1) or a sequence (𝛽 > 1). CatDB is LLM-agnostic, with the aim
of generating high-quality pipelines while minimizing hallucina-
tions. Well-structured prompts improve consistency across LLMs,
ensuring semantically similar outputs with modest variability.

Pipeline Generation: The LLM-generated Python ML pipeline
requires refinement, validation, and execution. To ensure semantic
correctness, CatDB uses dataset-specific instructions, guiding the
LLM to perform well-defined coding tasks such as data cleaning
(e.g., handling missing values) and data transformation (e.g., scal-
ing numerical features) based on dataset metadata. This strategy
improves the effectiveness of the generated pipeline. To further
enhance reliability, a dedicated error management component de-
tects and corrects syntactic and runtime errors, ensuring that the
generated pipeline is both meaningful and executable.

Table 1: Metadata Combinations.
Data Profiling Combinations of Data Profiling Items

Items #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11
Schema ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Distinct Value Count ✓ ✓ ✓ ✓

Missing Value Frequency ✓ ✓ ✓ ✓ ✓

Basic Statistics ✓ ✓ ✓ ✓ ✓

Categorical Values ✓ ✓ ✓ ✓

User Description (optional) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

User API: Finally, we provide users of CatDB with a program-
matic way to interact with the system’s data catalog and functional-
ity. This API consists of a function that accepts specific parameters
to retrieve or manipulate data, allowing users to control the data
access and processing according to their needs.

1: md = catdb_collect(M) /* collect metadata */
2: llm = LLM (model, clinet_url, config) /* config LLM */
3: P = catdb_pipgen(md,llm)
4: /* P.code: source code of generated pipeline */
5: /* P.results: outputs of pipeline's execution */

3 CATALOG AND PROMPT CONSTRUCTION
In this section, we describe the key algorithms for data catalog
metadata collection, refinement, and projection, as well as efficient
rule extraction, and the overall prompt construction algorithm. We
also provide examples to convey the underlying intuitions.

3.1 Data Catalog
Data catalog information is a rich source for constructing informa-
tive prompts. Algorithm 1 presents the pseudo-code for the offline
extraction of metadata from datasets. We pass the dataset 𝐷 and
an optional parameter 𝜏1 that specifies the number of samples to
store in the data catalog for each column. The sample helps avoid
redundant data access during prompt construction.

Column Metadata: We first extract the columns (Line 1) and
initialize a dictionary for column metadata (Line 2). Subsequently,
we iterate through all columns (Line 3) and extract their data type,

Algorithm 1 profiling(D, 𝜏1)
Input: Dataset D, Number of Samples 𝜏1
Output: Data Profiling P

1: cols← getColumns(D) // get dataset columns.
2: P ← [dict()]1×|cols|
3: for 𝑐 ∈ 𝑐𝑜𝑙𝑠 do // iterate over dataset columns.
4: P[𝑐]dataType, isCategorical ← getColumnType(D, 𝑐)
5: P[𝑐]distinctionPercentage ← getDistinctionPercentage(D, 𝑐)
6: P[𝑐]missingPercentage ← getMissingPercentage(D, 𝑐)
7: P[𝑐]IDs ← geInclusionDependencies(D, 𝑐)
8: P[𝑐]similarities ← getSimilarities(D, 𝑐)
9: P[𝑐]correlations ← getCorrelations(D, 𝑐)

10: P[𝑐]samples ← getSamples(D, 𝑐, 𝜏1)
11: P[𝑐]statistics ← getNumericalStatisticValues(D, 𝑐)
12: return P

feature types, distinct and missing values percentages (Lines 4-
6). Extracting column dependencies are complex tasks and hence,
our system adopts a simpler approach. We create column embed-
dings (i.e., vectors of length 300) and use these embedding to ex-
tract metadata like inclusion dependencies, similarities, and column
correlations (Lines 7-9). This approach yields faster processing (a
few seconds) with minor degradation in accuracy. For categorical
columns, we store all unique values as column samples (Line 10),
and for non-categorical and numerical columns, we randomly select
𝜏1 values as column samples. Finally, we calculate statistics (e.g.,
min/max and median) only for non-categorical columns (Line 11).

3.2 Data Catalog Refinements
CatDB profiles datasets to collect attribute types (e.g., string, num-
ber) and categorizes them as ML feature types (e.g., Categorical
and List). We leverage LLMs to infer feature types and enhance the
collected metadata. Our refined feature types and cleaned values
significantly enhance ML model accuracy in many cases. Figure 4
illustrates the workflow of our catalog refinement, data cleaning,
and extraction of a refined dataset, which we will discuss below.

Categorizing Sentence Data Types: We first identify a list of
string feature as candidates for categorical feature types. These
candidates might include values in different representations, and
both mixed data and missing values could have hindered accurate
type identification. CatDB refines two types of values. First, we
separate, refine, and represent composite data as separate features.
For example, the Address attribute in Figure 1 is a mix of zip codes
and states, and thus, split into State and Zip. Second, we identify
and split sentence features into individual values, each hashed to a
new numerical feature. For example, the Skills attribute in Figure 1
is identified as a list feature and split into new features in Figure 5.
Additionally, LLMs can infer feature types with just the attribute
name and a few samples (10 in our system). We observed that the
refined values exhibit fewer distinct values, which facilitates the
identification as categorical. For example, the Experience attribute
in Figure 5 was transformed into a short list of categorical values.

Refining Categorical Data: Additionally, we refine categorical
values that are semantically equivalent (e.g., Figure 1 Gender at-
tribute). The list of distinct items of a categorical feature is usually
small, and thus, we submit the entire list to the LLM to obtain a
mapping of refined to original values. In case of many distinct items,
we perform this process batch-wise for robustness.

Table #1
C1 ...C𝑛

Table #2
C1 ...C𝑚

Table #N
C1 ... yy

Raw Dataset Files

Ta
bl

e
Na

me
Co

lu
mn

Na
me

Statistics

Me
an

Va
l

%
Di

st
in

ct
Va

ls
Mi

n
Va

l
Ma

x
Va

l
To

ta
l

Va
ls

%
Mi

ss
ed

Va
ls

Sa
mp

le
Li

st

Fe
at

ur
e

Ty
pe

De
pe

nd
en

ci
es

Catalog
b

a

LLM

c

a b cInfer Feature Type Refine Categorical Values Merge & Write Clean Data

Clean & Merge
Dataset
Dataset

X1 ...X𝑘 y

Figure 4: Data Catalog Refinements & Data Preparation.
Clean Dataset

Experience Gender State Zip C++ Java ... Python Salary
0 1 ... 0
0 0 ... 0
1 0 ... 0
1 0 ... 0
0 1 ... 1

1 1 year Female CA 7050 100
2 2 years Female TX 7871 150
3 3 years Male TX 300
4 3 years Female 7871 310
5 1 year Male CA 200

Column Name % Distinct Feature Type Samples
Experience 100 Sentence [12 Months, two years, ...]

Skills 100 Sentence ["Python,Java", ...]

Gender 60 Categorical [F, Female, M]

Address 100 Sentence [7050 CA, TX 7871, CA, ...]
Experience 60 Categorical [1 year, 2 years, 3 years]

Skills – List [SQL, Java, C++, ...]

Gender 40 Categorical [Male, Female]

State 40 Categorical [CA, TX]
Zip 40 Categorical [7050, 7871]

Da
ta

Ca
ta
lo
g

Figure 5: Example of Data Catalog Update & Data Cleaning.

Materializing Prepared Data: After completing the refinement
process, we update and overwrite the input dataset. In detail, we
apply the mapping of categorical features values and join multi-
table datasets into a single table. In this stage, we are not considering
missing value imputation, outlier removal, and feature selection,
which we consider during pipeline generation.

3.3 Metadata Projection and Rule Definition
With the metadata at hand, we can construct prompts to guide LLMs
in generating pipelines. Our prompts consist of (1) the schema and
metadata (we filter and project relevant metadata), and (2) rules (we
define LLM tasks as rules based on data characteristics). Algorithm 2
sketches this metadata extraction and rules definition.

Schema and Metadata (S): Through the dataset schema and
column metadata, we guide the LLM. We also encode the column
names, which can enable the LLM to find correlations similar to
schema matching. If column names are not available, we add more
meaningful metadata, such as data type, feature type, statistics, and
samples. Furthermore, we include the number of missing values
and distinct values for choosing relevant pre-processing steps (see
Lines 2-6). As a basis for choosing the top-K columns as part of fea-
ture engineering, we also encode column dependencies as metadata.
Finally, we specify the label y as the target column (Line 6).

Rule Definition (R): We guide the LLM via rules with two
goals. First, we aim to reduce errors and improve performance. CatDB
employs a knowledge base to identify sources of errors and poor
model performance. Accordingly, we provide the LLM with a list of
rules for more directed search. Second, we aim for an open-ended
task guidance without dictating specific steps (e.g., XGBoost as the
ML model). Instead, we guide the LLM towards considering certain
primitives, which allows better options. There are four types of
essential system rules that can be inferred from a data catalog:

Algorithm 2 metadataAndRules(C)
Input: Columns C(contains catalog data)
Output: Schema & Metadata S, Rules R

1: // a) Extracting Schema and Metadata for Saving in S
2: for 𝑐 ∈ C do // iterate over dataset columns
3: S[𝑐] ← {cat[𝑐]name, dataType, isCategorical, statistics, samples}
4: S[𝑐] ← ⋃︁{cat[𝑐]distinctionPercentage, missingPercentage, IDs}
5: if c ∈ {target column} then
6: S[𝑐] ← ⋃︁{”target column”}
7: // b) Generating Rules for Saving in R
8: if C ∈ {has missing values} then
9: Rpreprocessing ← getMissingValueImputationRule(C)

10: Rpreprocessing ← ⋃︁
getDataAugmentationRule(C)

11: if C ∈ {labels are imbalance} then
12: Rpreprocessing ← ⋃︁

getRebalancingRule(C)
13: Rfe-engineering ← ⋃︁

getFeatureExtractionRule(C)
14: Rfe-engineering ← ⋃︁

getFeatureSelectionRule(C)
15: Rmodel-selection ← ⋃︁

getModelSelectionRule(C)
16: return S,R

• Data Preparation rules describe feature refinements (e.g.,
for missing values, feature normalization, outlier removal).
A generated pipeline will select appropriate methods (e.g.,
most-frequent value for categorical features).

• Feature Dependency rules encode the value extraction from
features or their relationships (e.g., for feature selection).

• Feature Filter rules remove features with low relevance or
correlation, which is useful for multi-table data with miss-
ing values and unnecessary features after consolidation.

• Data Augmentation rules rely on catalog statistics and target
features. In small or imbalanced datasets, we guide LLMs
to add data augmentation before training (Lines 8-15).

3.4 Overall Prompt Construction
Putting it all together, we now describe the overall prompt con-
struction algorithm (see Algorithm 3) and its remaining limitations.

Initialization: The algorithm is invoked with the dataset D,
the LLM M, and two optional parameters 𝛼 and 𝛽 that specify
the number of top-K columns impacting the target and a number
of chain prompts. We load the data catalog information in Line 1,
remove any unnecessary columns in Line 2, and also remove empty
and constant columns, as well as columns containing few non-null
values (e.g., columns with values in less than 2% of rows).

Metadata Projection: Furthermore, we select the top 𝛼 features
(Line 3) if the user specifies this parameter. In order to do so, we en-
code column dependencies as metadata. CatDB projects metadata,
focusing on patterns crucial for pipeline generation. The metadata
is organized in the following order: 1) categorical, 2) features highly
correlated with the target but with missing values, 3) sentence, 4)
numerical, and 5) boolean features. The top-K algorithm prioritizes
categorical features and, if space permits, selects from other groups.
We found that categorical metadata is vital for pipeline generation
because the feature types identified can differ from those in the
data catalog. For instance, a feature with 7 distinct integer values
might be identified as numerical and a candidate for normaliza-
tion. However, the data catalog may highlight it as a categorical
feature suitable for feature hashing and one-hot encoding. Other
feature groups can be generalized with brief prompts (e.g., features

Algorithm 3 prompt(D,M, 𝛼, 𝛽)
Input: Dataset D, LLMM, Top-K Columns 𝛼 , Chains 𝛽
Output: Prompt(s) P

1: c← loadDataCatalog(D) // load datasets’s data catalog.
2: c← cleanDataCatalog(c) // remove unnecessary columns.
3: c← selectTopKColumns(c,M, 𝛼) // select Top-K columns.
4: if 𝛽 == 1 then // all columns’ metadata & rules together (CatDB).
5: S, R← metadataAndRules(c) // get S and R for selected cols.
6: P ← formatPrompt(𝑆, 𝑅,M) // format prompt question.
7: else // split tasks, S, and R for CatDB Chain.
8: P← []1×(𝛽+1) ; k← ⌈ |c|𝛽 ⌉
9: for 𝑖 ∈ {1, · · · , 𝛽 } do // iterating over column chunks.

10: S, R← metadataAndRules(c[(𝑖 − 1) × k : 𝑚𝑖𝑛 (𝑖 × k, |c |)])
11: P[𝑖]preprocessing ← formatPrompt(𝑆, 𝑅preprocessing,M)
12: P[𝑖]fe-engineering ← formatPrompt(𝑆, 𝑅fe-engineering,M)
13: S′ ← <CODE>preprocessing & fe-engineering</CODE>
14: R′ ← metadataAndRulesmodel-selection (c)
15: P[𝛽 + 1]model-selection ← formatPrompt(S′, 𝑅′,M)
16: return P

v1-v20 are numerical with 5% missing values), allowing pipeline
pre-processing to recognize them as specified in the data catalog.

CatDB Default: The user can specify the number of chains via
𝛽 : if 𝛽 = 1, we will construct a single prompt without consideration
of LLM limitations. By default, we combine S and R to form the
final prompt, which is returned in Lines 4-6.

CatDB Chain: For 𝛽 > 1 (called CatDB Chain), we split the
data catalog information into 𝛽 chunks, each containing 𝑘 columns
(see Line 8). We construct pre-processing and feature-engineering
prompts for each chunk (Lines 9-12), but only one model selec-
tion prompt (Line 15). The model selection prompt includes the
results of pre-processing and feature engineering tasks (generated
Python code) as well as the rules for model selection based on the
target column (Lines 13-14). Figure 6 shows the prompt templates
of CatDB (𝛽 = 1) and CatDB Chain (𝛽 = 2). In CatDB Chain, we
first submit all pre-processing prompts, followed by feature engi-
neering prompts. In each chain, we append the previous result to
the new prompt. This strategy incrementally updates the pipeline
based on the prompt rules and metadata. We adopted this strategy
for two reasons: First, a chunking of columns may lose column
dependencies. By appending the source of the pipeline, the LLM
can interpret the source and successfully distinguish the column
dependencies. Second, we verify each pipeline step independently,
simplifying error detection and correction. However, this approach
increases token costs as each prompt includes the context.

Handling Prompt Limitations: Despite successful construc-
tion of prompts, CatDB faces a systemic limitation of LLM mes-
sage sizes. If datasets are small and the final prompt fits the LLM’s
limitations, the invocation only requires a single prompt (𝛽 = 1).
However, for large datasets with many features, the prompt exceeds
the LLM’s maximum token limit. To overcome this limitation, we
introduce two approaches. First, we reduce the number of features
via the parameter 𝛼 , which trades model performance due to feature
selection with substantially reduced costs. Second, CatDB Chain
divides the metadata into smaller subtasks, projects metadata, and
chains the results (𝛽 > 1). While this strategy requires multiple
LLM invocations (increased time and cost), it is effective for much
larger datasets and provides robust error management.

Generate Python Pipeline

Import Libs & Modules

Read Train and Test datasets

Preprocessing

Feature Engineering & Selection

Model Selection

Hyperparameter Tuning

Code Style & Model Evaluation

Dataset Description

Schema & Metadata:
■ col1 [metadata ...]

■ col2 [metadata ...]

■ ...

■ col𝑛 [metadata ...]

■ col𝑛+1 [target column, metadata ...]

Express Task (Classification or Regression)

Sy
st

em
Ru

le
s

Ca
ta

lo
g
Da

ta

(a) CatDB Prompt Template (𝛽 = 1).

Generate Python Pipeline

Import Libs & Modules

Preprocessing

Dataset Description

Schema & Metadata:
■ col1 [metadata ...]

■ col2 [metadata ...]

■ ...

■ col⌈𝑛
𝛽
⌉ [metadata ...]

Ru
le

s
Ca

ta
lo

g
Da

ta

Generate Python Pipeline

Import Libs & Modules

Fe. Engineering & Selection

Dataset Description

<CODE> src chain #2 </CODE>

Schema & Metadata:
■ col1 [metadata ...]

■ ...

■ col⌈𝑛
𝛽
⌉ [metadata ...]

Ru
le

s
Ca

ta
lo

g
Da

ta

Prompt Chain 1

Generate Python Pipeline

Import Libs & Modules

Preprocessing

Dataset Description

<CODE> src chain #1 </CODE>

Schema & Metadata:
■ col⌈𝑛

𝛽
⌉+1 [metadata ...]

■ ...

■ col𝑛 [metadata ...]

Ru
le

s
Ca

ta
lo

g
Da

ta

Generate Python Pipeline

Import Libs & Modules

Fe. Engineering & Selection

Dataset Description

<CODE> src chain #1 </CODE>

Schema & Metadata:
■ col⌈𝑛

𝛽
⌉+1 [metadata ...]

■ ...

■ col𝑛 [metadata ...]

Ru
le

s
Ca

ta
lo

g
Da

ta

Prompt Chain 2

Generate Python Pipeline

Read Train and Test datasets

Import Libs & Modules

Model Selection

Hyperparameter Tuning

Code Style & Model Evaluation

Dataset Description

<CODE> src chain #2 </CODE>

■ col𝑛+1 [target column, metadata ...]

Express Task (Classification or Regression)

Ru
le

s
Ca

ta
lo

g
Da

ta

Prompt Last Chain
1

2

3 4

(b) CatDB Chain Prompt Template (𝛽 = 2).

Figure 6: CatDB and CatDB Chain (Two Chains as Examples) with Ordering of Submitted Prompts.

4 PIPELINE GENERATION AND VALIDATION
CatDB generates an initial pipeline by submitting the constructed
prompt to the LLM and validating the output. Our validation in-
cludes a syntax check for correctness and a runtime check on a local
dataset. This mechanism facilitates efficient error management, and
we also conduct code analysis to identify and refine any missing
steps in the pipeline (see again, Figure 3 for an example).

4.1 Overall Pipeline Generation
We aim to generate a high-quality, data-centric ML pipeline (no
errors, accurate, and fast) with only few LLM interactions. Accord-
ingly, we generate stateless prompts—that are self-contained—which
simplifies the re-submission of prompts for individual tasks. More-
over, we encode catalog information, such as file formats, delimiters,
and statistics (e.g., ratio of missing values) to guide the LLM. This
metadata is more concise than example records.

Algorithm Description: Algorithm 4 shows the overall CatDB
algorithm with a single prompt. For CatDB Chain, the entire algo-
rithm is repeated for each chain, passing the result of a chain to
the next. We first construct the prompt in Line 3 and submit it to
the LLM in Line 2 for obtaining the pipeline code. In Lines 3-15,
we attempt to debug and refine the generated pipeline by incor-
porating both local and LLM systems. The maximum number of
attempts is limited by 𝜏2 to ensure termination and control costs.
Lines 7-15 systematically check for the different error types, where
we aim to locally fix errors (Line 8), but fall back to LLM-based
error handling for unknown errors (Lines 10-14). Finally, we refine
or fix problematic parts of the pipeline, and return the pipeline.

Example 1 (Pipeline Generation). Figure 3 illustrates a com-
bination of rules and metadata that guides the LLM in adding step-
specific code. The file path and format of the dataset allows the LLM
to generate a CSV reader in Lines 8-9. For pre-processing (Lines 10-12),
the pipeline spends no time extracting columns with missing values
because we already know and encode the number of data points and
the ratio of not-null values into the prompt. Similarly, for feature
engineering, we guide the LLM with a list of categorical columns as
well as their distinct item ratios and values. The pipeline comprises
an OneHotEncoder and removes unnecessary columns after feature

Algorithm 4 pipeGen(D,M, 𝛼, 𝜏2)
Input: Dataset D, LLMM, Top-K Columns 𝛼 , Maximum Attempts 𝜏2
Output: Pipeline Source Code 𝑆𝑅𝐶

1: p← prompt(D,M, 𝛼, 𝛽 = 1) // dataset prompt Algorithm 3.
2: src← submitPromptToLLM(p,M)
3: for 𝑖 ∈ 𝜏2 do // iterate to fix pipeline error.
4: err← parseAndExecute(src)
5: if err = ∅ then
6: break
7: else if err ∈ {Knowledge-base Error} then
8: src← fixKnowledgeBaseErorrAndApplyPatch(src, err)
9: else if err ∈ {Syntax Error} then

10: p ′ ← errorPrompt(D,M, src, err) // syntax error prompt.
11: src← submitPromptToLLM(p′,M)
12: else
13: cat← getCatalogData(D, err) // filter & project metadata.
14: p ′ ← errorPrompt(D,M, src, err, cat) // run. err. prompt.
15: src← submitPromptToLLM(p′,M)
16: if ¬verifyPipelineCode(src) then
17: src← handCraftPipeline(src)
18: return src

engineering. The prompt mentions the target feature and asks for
training a regressor in Lines 15-18. Finally, our rules guided the LLM
to pick a RandomForestRegressor with fixed hyper-parameters.

Algorithm Cost Analysis: Finally, consider a pipeline prompt
𝑃𝑝 of rules and metadata, and an error prompt 𝑃𝑒 of pipeline code
and the error. The incurred costs with a single-prompt CatDB are:

C(𝑃𝑝 , 𝑃𝑒 , 𝛾, 𝜏2) = 𝛾L(𝑃𝑝) +
𝛾∑︂
𝑖=1

𝜏2∑︂
𝑗=1
L(𝑃𝑒𝑖 𝑗), (1)

where L(𝑥) is the number of tokens, 𝛾 is the number of LLM inter-
actions, and 𝜏2 is the maximum number of LLM error correction
attempts. 𝑃𝑒𝑖 𝑗 (iteration 𝑖 , attempt 𝑗) depends on the size of the
error message. Furthermore, the costs of CatDB Chain are:

C𝑐ℎ𝑎𝑖𝑛 = C(𝑃𝑚, 𝑃𝑒 , 𝛾, 𝜏2) +
∑︂

𝑝∈{𝑃𝑑 ,𝑃𝑓 }

𝛽∑︂
𝑖=1
C(𝑝𝑖 , 𝑃𝑒𝑖 , 𝛾, 𝜏2), (2)

where 𝑃𝑑 , 𝑃𝑓 , and 𝑃𝑚 denote the individual pre-processing, feature
engineering, and model selection prompts.

Raw Pipeline Code Parse & Compile Execute

Error
Type

Local Search Error
Example:
’pandas’ not found!

Fix Error
Example:
$ pip install pandas

Construct Syntax Error Prompt:

Task: Fix Source Code Errors

<CODE> Pipeline Src </CODE>
<ERROR> Error Message </ERROR>

Construct Runtime Error Prompt:
.. Syntax Error Prompt ..

Main Prompt Metadata Summary

LLM

Knowledge Base (KB) Runtime Error (RE)

Syntax Error (SE)

Error Type

Key KB
FileNotFound KB
InvalidIndex KB
Import KB
ZeroDivision KB
Memory KB

Syntax SE
UFuncType SE
Pickling SE
Indentation SE
Axis SE
Invalid Params SE
Recursion SE
OutOfBounds df. SE

Other RE

Figure 7: Error Management & Classification of Error Types.

4.2 Validation and Pipeline Error Management
Although we guide the LLM with metadata to generate correct and
effective pipelines, errors are generally unavoidable. Randomization
means even fixed prompts can yield varying errors. To tackle this
issue, CatDB comprises a dedicated error management component
(see Figure 7), which we describe in detail below.

Types of Errors: Analyzing request logs from various LLMs,
we identified 23 types of errors (Figure 8 shows their relative occur-
rence frequencies), categorized into three groups: (i) Environment &
Package Errors: Pipelines run in a basic, pre-installed environment.
The CatDB Knowledge Base (KB) API manages six error types, such
as missing packages, which it resolves by installing dependencies
and re-executing the pipeline. (ii) Syntax & Parse Errors (SE): Using
the ast [3] library, we parse and execute pipelines, automatically
handling issues like missing imports, uncommented text, and inden-
tation. If unresolved, we resubmit the pipeline to the LLM. These
errors occur in <3% of cases and are typically fixed in one iteration.
(iii) Runtime & Semantic Errors (RE): Pipelines are tested on sample
data. Most errors (85%) arise from missing metadata or unavailable
data. LLM assistance, incorporating catalog details (e.g., column
types), resolves these typically within four iterations.

Error Correction: The CatDB KB API provides a cost-effective
and locally executable solution. However, both SE and RE may ne-
cessitate additional LLM interactions. Instead of our initial prompt
templates, we use dedicated prompt templates for error correction.
As shown in Figure 7, these templates combine (1) the source code
of the erroneous pipeline (in <CODE> tags), (2) the error message
with line numbers (in <ERROR> tags), and (3) a summary of the
original prompt (including metadata relevant to the errors solely
for RE). Table 2 shows the error distributions of our substantial
error traces we collected across various datasets, pipelines, and
LLMs over an extended system development period. Most errors
are related to RE and highlight the need to improve initial prompts
and enhance KB API handling to reduce generation costs.

Guarantees: CatDB gives the guarantee that there are no silent
errors, unknowingly corrupting accuracy. Combining syntax checks

Table 2: Error Distributions of Error Trace Dataset.
LLM Total Requests KB [%] SE [%] RE [%]

Llama3.1-70b 20,868 2.464 2.907 94.629
Gemini-1.5 pro 10,041 21.213 2.092 76.695

Va
lu

e
|

Ty
pe

|

Ke
y

|

A
ttr

ib
ut

e
|

Fi
le

N
ot

Fo
un

d
|

N
am

e
|

M
od

ul
e

|
N

ot
Fo

un
d

|
In

de
x

|

In
va

lid
In

de
x

|

Sy
nt

ax
|

M
em

or
y

|

UF
un

cT
yp

e
|

Pi
ck

lin
g

|

Im
po

rt
|

In
de

nt
at

io
n

|

A
xi

s|
In

va
lid

|
Pa

ra
m

et
er

|
N

ot
Fi

tte
d

|

Re
cu

rs
io

n
|

O
ut

O
fB

ou
nd

s|
D

at
et

im
e

|
As

se
rti

on
|

N
ot

-|
Im

pl
em

en
te

d
|

In
tC

as
tin

gN
aN

|

Ze
ro

D
iv

isi
on

|

0.001
0.01
0.1

1
10

100

Er
ro

rR
at

io
%

Llama3 (Total Requestes = 20,868)
Gemini-1.5 (Total Requestes = 10,041)

Figure 8: Ratio and Distribution of Errors.
and runtime checks on local validation data, we verify the function-
ality and accuracy of the generated ML pipeline. In case of errors,
the combination of a local knowledge base of errors&solutions as
well as iterative LLM interactions for error correction have proven
very effective. By adding rare remaining errors to the knowledge
base, any manual error correction became the exception.

4.3 System Limitations
CatDB leverages LLMs to generate ML pipelines tailored to spe-
cific datasets, but there are remaining limitations that constitute
interesting directions for future work. First, we support basic data
cleaning tasks such as the handling of null values, duplicate values,
and outliers, but there are also many unsupported pre-processing
steps (e.g., entity resolution and data augmentation from data lakes).
Second, CatDB is designed for supervised learning tasks where we
leverage the accuracy on the validation data as a signal. Future ex-
tensions should include pre-processing and unsupervised tasks for
tabular, time-series, and image data. Third, we do not yet enforce
library constraints on pipeline generation. Organizations may have
restrictions on certain libraries, and thus, we should enforce lists
of allowed/disallowed libraries for compliance.

5 EXPERIMENTS
We study our CatDB framework on a variety of real-world datasets
with different data characteristics, examining both existing and
non-existing pipelines, and different LLMs. The primary insights
are that: (1) CatDB generates pipelines with competitive runtime,
cost, and evaluation performance, and (2) CatDB is robust with
regard to errors and large datasets with many features.

5.1 Experimental Setting
HW/SW Environment: We ran all experiments on a server node
(VM) with an Intel Core CPU (with 32 vcores) and 148 GB of DDR4
RAM. The software stack consisted of Ubuntu 22.04, OpenJDK 11
(for Java baselines), and Python 3.10 (for Python baselines).

Implementation Details: The entire CatDB system is imple-
mented in Python and utilizes the data profiling sub-system of
KGLiDS [35]. For generating pipeline code, we use the OpenAI
API [6] for GPT-4o, the Groq cloud [5] service for Llama3.1-70b,
and Google AI Studio [4] for Gemini-1.5-pro. The latency of LLMs
was negligible, lasting only a few seconds (analyzed via dedicated
tools [2]). We further utilize an automatic method for extracting
required packages and creating local environments.

Datasets: Table 3 shows the real-world datasets used for all
of our experiments. These datasets encompass three task types
(binary/multi-class classification, and regression), single/multi-table
datasets, and different data characteristics. We divided all datasets
into 70/30 train and test sets. For CatDB, we profile the datasets,

Table 3: Used Datasets and their Data Characteristics.
ID Dataset #Tables 𝑛 (nrow) 𝑚 (ncol) Dataset Type #Classes
1 Wifi 1 98 9 Binary 2
2 Diabetes 1 768 9 Binary 2
3 Tic-Tac-Toe 1 958 10 Binary 2
4 IMDB 7 30,530,313 15 Binary 2
5 KDD98 1 82,318 478 Binary 2
6 Walking 1 149,332 5 Multiclass 22
7 CMC 1 1,473 10 Multiclass 3
8 EU IT 1 1,253 23 Multiclass 148
9 Survey 1 2,778 29 Multiclass 9
10 Etailing 1 439 44 Multiclass 5
11 Accidents 3 954,036 46 Multiclass 6
12 Financial 8 552,017 62 Multiclass 4
13 Airline 19 445,827 115 Multiclass 3
14 Gas-Drift 1 13,910 129 Multiclass 6
15 Volkert 1 58,310 181 Multiclass 10
16 Yelp 4 229,907 194 Multiclass 9
17 Bike-Sharing 1 17,379 12 Regression 869
18 Utility 1 4,574 13 Regression 95
19 NYC 1 581,835 17 Regression 1,811
20 House-Sales 1 21,613 18 Regression 4,028

Wifi
Diabetes

Tic-T
ac-Toe

IMDB
KDD98

Walking
CMC

EU IT
Survey

Etailing

Accid
ents
Financial

Airlin
e

Gas-D
rift

Volkert Yelp

Bike-Sharing
Utilit

y NYC

House-Sales
0

50
100
200
300
400

Ex
ec

ut
io

n
Ti

m
e

[s
]

Data Profiling Time
Dataset Read Time

(a) Execution Time for Data Profiling.

Wifi
Diabetes

Tic-T
ac-Toe

IMDB
Walking

CMC
EU IT

Survey
Etailing

Accid
ents

Bike-Sharing
Utilit

y NYC

House-Sales
0

10
20
30
40
50

Fe
at

ur
e

Co
un

t

Financial
Airlin

e
Gas-D

rift
Volkert Yelp

KDD98
0

100
200
300
400

String Int Float Bool
|Features|<50 |Features|>50

(b) Data Type Distribution.

Figure 9: Data Profiling and Data Type Distribution.

extract their metadata, and store this metadata in our data catalog.
Figure 9(a) shows the runtime of this offline data profiling. Our
system takes ≈ 6𝑚𝑖𝑛 for large datasets and < 50𝑠 for small ones.
Figure 9(b) further shows the distribution of data types. We observe
a good mix of numerical, textual, and categorical features.

Baseline Comparisons: We compare our CatDB framework
with state-of-the-art systems in three settings:

• LLM-based Baselines: AIDE [69] and AutoGen [82] are state-
of-the-art, end-to-end LLM-based solution generators for
ML tasks. Additionally, CAAFE [37] a semi-automated ML
task generation system, uses LLMs for automatic feature en-
gineering in small tabular datasets. While CAAFE and AIDE
only support the OpenAI LLMs, we extended their function-
ality to support Llama and Gemini, as well as other models
beyond TabPFN [36] (e.g., RandomForest) for CAAFE.

• AutoML Tools: We compare CatDB with AutoML systems
designed for tabular data. We prepared all datasets in a
way to be compatible with the following AutoML tools:
AutoGluon [24], H2O [46], Flaml [80], Auto-Sklearn (for re-
gression) [27], and Auto-Sklearn 2.0 (for classification) [25].

Schema Schema+Categorical Values Schema+Unique Count
Schema+Statistics Schema+Unique Count+Statistics CatDB Chain

Gemini-1.5 Llama3.1 GPT-4o
0

20
40
60
80

100

Te
st

A
UC

%

(a) Tic-Tac. (Binary Classification)

Gemini-1.5 Llama3.1 GPT-4o
0

20
40
60
80

100

Te
st

A
UC

-o
vr

%

(b) Walking (Multiclass Classification)

Gemini-1.5-pro GPT-4o Llama-3.1-70b

20 60 10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

0
20
40
60
80

100

Top-K Features Metadata

A
UC

%

(c) KDD98 w/ CatDB Prompts

1 3 5 7 9 11 13 15 17 19 21 23

0
20
40
60
80

100

Chain (|Chain| = 20 Features)

A
UC

%

(d) KDD98 w/ CatDB Chain Prompts
Figure 10: Metadata Impact on Pipeline Performance.

• AutoML-based Workflows: Since AutoML primarily focuses
on model selection, we added two pre-processing steps: data
cleaning w/ SAGA [74] and Learn2Clean (L2C) [15], and
data augmentation w/ ADASYN [33] for classification and
Imbalanced Learning Regression [83]. The pre-processed
datasets were then submitted to the AutoML tools. Pre-
processing was only done on the training set, while model
performance was evaluated on the unaltered test sets.

5.2 Prompt Construction and Metadata Impact
To study the impact of metadata, we compose different configu-
rations as shown in Table 1, and evaluate the pipeline accuracy
on three different datasets and task types. Figure 10 shows the
performance of CatDB with gradually increasing metadata.

Pipeline Quality: Figure 10 shows micro benchmark results
for the impact of metadata and the quantity of these meta data.
First, more metadata does not always improve pipeline quality.
Simple schema metadata (feature names and types) often matches
or outperforms schemas with additional statistics (Figures 10(a),
10(c)). CatDB carefully combines metadata and instructions to en-
hance performance, as excessive metadata can lead LLMs to ignore
tasks. When prompts lack specific instructions tied to relevant meta-
data (e.g., handling missing values), LLMs may default to arbitrary
pre-processing, such as random imputation. Second, LLMs strug-
gle with overly large metadata inputs. In Figure 10(c), we vary K
for the top-K feature metadata selection. Exceeding 260 features
caused very large prompts and led to ignored rules. As shown in
Figure 10(d), CatDB Chain mitigates this issue by splitting tasks
and feature metadata, ensuring effective pipeline generation. Third,
due to randomness, there is some variation in performance even
with a fixed prompt for different meta data configurations, but
CatDB Chain achieved consistently high performance compared
to all other configurations. Fourth, fixed metadata is only effective
for homogeneous datasets (e.g., numerical-only with basic statis-
tics) but falls short for heterogeneous datasets with mixed feature
types. CatDB’s metadata selection adapts to dataset characteristics,
leading to >20% performance gains over Gemini configurations

Table 4: Catalog Refinement and Data Cleaning (6 Datasets Refined: 1-14 Columns, LLM = Gemini-1.5).

Method EU IT Wifi Etailing Survey Utility Yelp
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #1 #2 #3 #4 #1 #2 #3 #4 #5 #6 #1 #2 #1 #1 #2

Original 563 256 148 64 119 53 59 46 24 11 48 12 15 4 69 5 4 2 256 121 71 90 134 14 1008 (sentence) 9 199 2060 61
CatDB 100 43 45 32 95 39 47 36 16 3 43 6 9 3 15 4 3 1 18 17 31 66 127 10 160 (categorical) 8 132 512 55

Table 5: Performance Comparison of Six Cleaning Datasets (LLM = Gemini-1.5, ✶: CatDB Config, ✛: CatDB Chain Config).

Dataset
CatDB/CatDB Chain CAAFE AIDE AutoGen AutoML AutoML w/ Workflow

Original Refined TabPFN R.Forest H2O Flaml Autogluon Clean H2O Flaml Autogluon
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Method Train Test Train Test Train Test

EU IT✶ 100.0 39.2 100.0 91.8 0.1 N/A 0.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A 90.5 44.8 L2C N/A N/A N/A N/A 89.9 32.6
Wifi✶ 100.0 100.0 100.0 100.0 100.0 56.5 79.8 61.5 N/A N/A 64.2 64.2 84.3 61.0 84.9 73.7 90.6 61.0 SAGA 99.9 60.6 98.4 64.2 97.9 65.8

Etailing✶ 100.0 68.5 100.0 99.9 99.8 71.0 79.6 69.9 100.0 69.7 100.0 63.4 100.0 53.1 79.4 64.9 96.9 67.7 L2C 99.9 64.0 100.0 65.2 98.5 72.4
Survey✶ 100.0 92.2 100.0 97.1 99.5 97.7 88.5 88.5 99.7 90.6 100.0 98.1 84.9 84.3 98.8 98.1 99.2 93.4 SAGA 83.0 75.3 99.3 88.2 99.1 85.6
Utility✶ 99.8 98.8 99.8 98.8 Dosen’t support 99.8 99.0 98.8 98.8 N/A N/A 99.9 99.0 99.9 99.5 SAGA 40.6 4.6 No trained models
Yelp✛ 99.9 66.8 99.9 98.2 Out of Mem. 65.8 65.5 N//A N/A 76.2 75.8 92.5 77.2 85.5 76.7 84.4 81.9 L2C 81.1 64.6 90.0 70.1 96.8 89.0

using the same metadata (Figures 10(a) and 10(b)). Finally, despite
significant performance differences across LLM models and tasks,
CatDB Chain consistently yields high accuracy.

5.3 Catalog Refinement and Data Cleaning
In order to evaluate the data catalog refinement and initial cleaning,
we perform dedicated micro-benchmarks.

Number of Distinct Items: Table 4 shows the LLM-based cata-
log refinement, with 1 to 14 updates. We ran these experiments with
all LLMs, observed negligible differences, and thus, report the Gem-
ini results. We distinguish categorical and list features, where lists
are highlighted with gray background. For instance, in Yelp column
#1, values such as "Golf,Roofing,Movers", "Movers,Taxis" and
"Taxis,Golf" were joined and treated as categorical values. Our
system identifies the feature type as a list, extracts unique values
({Golf,Roofing,Movers,Taxis}) and applies k-hot encoding. For
other columns (not highlighted), CatDB deduplicates the values,
where we see a systematic reduction of distinct items.

Accuracy Impact: Table 5 compares the accuracy of original and
refined versions on six datasets, including a comparison with work-
flows of state-of-the-art data cleaning and AutoML tools. CatDB
consistently improves the performance, particularly on datasets
with data quality issues, achieving up to 52% gains. First, on EU IT,
categorical features caused L2C to fail due to the absence of con-
tinuous columns. The target feature had semantically identical but
differently formatted duplicates, leading to imbalanced labels and
incorrect upsampling. AutoGluon performed better on the original
data, while AIDE, AutoGen, and CAAFE removed missing-value fea-
tures, reducing sample size and impairing model building. Second,
on Etailing, performance was initially comparable across methods,
as all relied on basic LLM decisions. Our cleaning (catalog refine-
ment) step improved accuracy by 30% due to eliminating duplicate
values correlated with the target feature. Third, on Yelp, hashed
days and timestamps were misinterpreted as missing values. SAGA
and L2C applied imputation, distorting the distribution, while LLM-
based methods failed to recognize list features, leading to poor
performance. For Wifi, Survey, and Utility, improvements stemmed
from better categorical value handling and deduplication. In Wifi,
CatDB refined a highly correlated categorical feature and removed
a constant-value feature, while in Survey, a feature was transformed
from a sentence to a categorical feature. Overall, CatDB shows very
good and robust train and test accuracy.

Table 6: Runtime Comparison of Six Cleaning Datasets.

Dataset CatDB [s] CAAFE [s] AIDE AutoGen Cleaning + Aug.
Original Refined TabPFN R.Forest [s] [s] [s]

EU IT 4.5 1.4 132.2 238.4 N/A N/A 203.6 + 1.6
Wifi 0.8 0.8 86.30 89.5 N/A 48.92 200.4 + 5.2

Etailing 1.6 1.7 178.9 98 40 245.6 330 + 1.6
Survey 1.8 1.4 297.4 114.7 40 39.2 2,086.8 + 5.5
Utility 4.2 3.8 N/A N/A 40 29.9 863.6 + 2,755.1
Yelp 584.4 2,477.4 N/A 1,029.5 N/A 323 41,400.6 + 83.8

Costs and Runtime: CatDB shows major cost and runtime dif-
ferences to other LLM-based baselines. CatDB’s costs are influenced
by three factors: First, CatDB’s uses a two-step process for refining
categorical values and integrating data catalog information, which
adds overhead. Second, CatDB provides only moderately detailed
metadata to the LLM, whereas CAAFE includes schema and 10 sam-
ples per feature, which incurs higher costs for datasets with many
features. AIDE and AutoGen rely on concise, human-generated
descriptions, but this approach shifts effort to human oversight.
Third, CatDB boosts the pipeline quality by incorporating error-
handling mechanisms, which further increases cost. In contrast,
AIDE and AutoGen resubmit prompts, while CAAFE skips feature
engineering when errors occur. Finally, Table 6 compares pipeline
execution times (excluding generation time) across six datasets.
CatDB substantially outperforms CAAFE by leveraging cleaned
data and avoiding computationally expensive pipeline primitives.
On Yelp as an exception, one-hot encoding increased data size
and processing time. Overall, CatDB outperforms all baselines, on
almost all datasets by more than an order of magnitude.

5.4 Pipeline Performance with 10 Iterations
To study CatDB’s and CatDB Chain’s pipeline generation, we gen-
erate and execute ML pipelines for three datasets using three LLMs
with 10 iterations of prompt executions.

Quality of Generated Pipelines: We evaluate pipeline qual-
ity over 10 iterations to account for randomness, even with LLM
temperature set to zero. Figure 11 compares our method with LLM-
based baselines in terms of AUC scores. The CAAFE framework—
which uses a fixed pre-processing stage, LLM-driven feature engi-
neering, and a fixed classifier (TabPFN)—performs well with mini-
mal variance (Figures 11(a) and 11(b)). However, CAAFE struggles
with high-dimensional feature spaces, such as the Volkert dataset
(Figure 11(c)), and its performance drops when replacing TabPFN
with RandomForest as a model with better scalability. The AIDE

Table 7: Performance Comparison of 8 Datasets (Iteration = 1, OOM: Out of Memory, TO: Time Out). L2C Preprocessing: Decimal
Scale Normalization (DS), Exact Duplicate (ED), Approximate Duplicate (AD), Inter Quartile Range (IQR), Local Outlier Factor
(LOF), Expectation-Maximization (EM) and MEDIAN Imputations, DROP Sample.

Dataset LLM CatDB CAAFE AIDE AutoGen AutoML AutoML w/Cleaning & Augmentation
Single Chain TabPFN R.Forest A.Sklearn H2O Flaml Autogluon Preprocessing A.Sklearn H2O Flaml Autogluon

Airline
GPT-4o 100.0 100.0 N/A 100.0 100.0 N/A N/A DS +

Gemini-1.5 100.0 100.0 OOM 100.0 100.0 OOM 100.0 N/A N/A MEDIAN + No Training Model
Llama3.1-70b 100.0 100.0 N/A 99.0 100.0 N/A N/A AD

IMDB
GPT-4o 98.62 98.58 N/A 100.0 100.0 100.0 99.99 99.99 99.99

Gemini-1.5 99.98 99.98 OOM N/A 100.0 OOM 100.0 99.99 97.5 DS + ED OOM 99.99 99.99 TO
Llama3.1-70b 97.18 96.38 N/A 50.0 100.0 99.99 99.99 99.99 99.75

Accidents
GPT-4o 94.21 95.01 84.62 N/A 94.44 93.9 93.94 97.34 DROP + 91.49 93.12 94.95

Gemini-1.5 94.2 94.21 OOM 84.25 N/A 96.54 OOM 90.96 95.36 97.17 DS + AD OOM 84.35 93.35 94.91
Llama3.1-70b 95.0 95.18 84.02 N/A 93.83 92.92 94.95 97.35 93.09 92.93 94.72

Financial
GPT-4o 100.0 99.9 85.24 N/A 100.0 100.0 100.0 99.99 DS + 99.01 100.0 100.0

Gemini-1.5 100.0 100.0 OOM 84.9 N/A 100.0 OOM 100.0 100.0 99.99 DROP + OOM 100.0 100.0 100.0
Llama3.1-70b 100.0 100.0 85.94 N/A 100.0 100.0 100.0 99.99 LOF + ED 99.01 100.0 100.0

CMC
GPT-4o 68.66 73.81 73.13 67.91 71.56 71.61 76.39 76.39 27.22 DS+ 74.15 73.62 72.81

Gemini-1.5 68.84 74.33 73.13 67.95 72.02 71.61 TO 75.17 77.23 25.71 Augmentation TO 74.43 75.65 71.11
Llama3.1-70b 73.15 71.03 75.7 74.29 71.56 71.53 75.96 75.89 27.22 75.71 74.24 71.11

Bike-Sharing
GPT-4o 76.83 86.89 39.46 39.46 N/A N/A 90.97 60.0 N/A N/A 92.27 92.3

Gemini-1.5 92.06 92.12 Dosen’t support 94.27 93.55 94.32 N/A 93.82 64.29 IQR 93.17 N/A 93.29 93.18
Llama3.1-70b 79.54 88.04 93.47 93.5 94.39 N/A 93.82 72.15 93.17 N/A 92.81 92.15

House-Sales
GPT-4o 87.48 86.34 75.41 N/A 89.81 15.68 87.99 86.69 83.57 26.5 77.7 84.19

Gemini-1.5 99.99 87.98 Dosen’t support 75.41 87.9 89.86 N/A 89.94 90.34 IQR + AD 84.07 15.91 77.7 83.6
Llama3.1-70b 87.96 89.0 87.87 87.9 89.89 N/A 89.39 90.36 84.13 N/A 83.62 84.19

NYC
GPT-4o 48.58 55.17 32.64 68.74 10.14 N/A 56.38 43.25 9.56 31.56 62.85 41.24

Gemini-1.5 67.22 65.53 Dosen’t support 69.25 68.74 62.41 N/A 68.82 45.16 IQR + ED 33.72 N/A 68.91 51.97
Llama3.1-70b 48.58 48.58 68.71 68.75 56.67 35.28 65.88 45.56 57.04 31.57 69.42 55.59

GPT-4o Gemini-1.5 Llama3.1-70b

CatDB
CatDB
Chain

CAAFE
TabPFN

CAAFE
R.Forest AIDE AutoGen40

60

80

100

w
/G

PT
-4

o
Fa

ile
d

w
/G

em
in

iF
ai

le
d

11 11

0.72

0.88

0.6

0.8

A
UC

%

(a) Diabetes (CatDB Chain Selected)

CatDB
CatDB
Chain

CAAFE
TabPFN

CAAFE
R.Forest AIDE AutoGen40

60

80

100

w
/L

la
m

a
Fa

ile
d

11

0.5

0.51

1 11 1

1

1

1

A
UC

%

(b) Gas-Drift (CatDB Selected)

CatDB
CatDB
Chain

CAAFE
TabPFN

CAAFE
R.Forest AIDE AutoGen40

60

80

100

Failed

0.930.93 0.930.93

0.8

0.940.94

0.94

0.89

0.5

0.95

A
UC

%
(c) Volkert (CatDB Chain Selected)

Figure 11: Performance Comparison of Three Datasets w/ LLM-based Baselines (10 iterations).

CatDB CatDB Chain CAAFE RandomForest
AIDE AutoGen CAAFE TabPFN

Gemini-1.5 Llama3.1-70b GPT-4o
7.5k
15k
30k
60k

120k
240k Cost

To
ke

n
Co

un
t

×
A

ID
E

×
A

ID
E

Gemini-1.5 Llama3.1-70b GPT-4o
0

20
40
60
80

Runtime

Ex
ec

ut
io

n
Ti

m
e

[m
in

]

×
A

ID
E

×
A

ID
E

(a) Diabetes

Gemini-1.5 Llama3.1-70b GPT-4o
15k
50k

100k
150k
200k
250k Cost

To
ke

n
Co

un
t

×
Au

to
Ge

n

Gemini-1.5 Llama3.1-70b GPT-4o
0
1

10
102
103
104 Runtime

Ex
ec

ut
io

n
Ti

m
e

[m
in

]

×
Au

to
Ge

n

(b) Gas-Drift

Gemini-1.5 Llama3.1-70b GPT-4o
0

10k

102k

Cost

To
ke

n
Co

un
t

×
Ta

bP
FN

×
Ta

bP
FN

×
Ta

bP
FN

Gemini-1.5 Llama3.1-70b GPT-4o
0
1

10
102

103
Runtime

Ex
ec

ut
io

n
Ti

m
e

[m
in

]

×
Ta

bP
FN

×
Ta

bP
FN

×
Ta

bP
FN

(c) Volkert
Figure 12: Cost and Runtime Comparison of Three Datasets
and Different LLMs (10 iterations).

framework shows similar performance but lacks stability across
LLMs, failing on the Diabetes dataset (Figure 11(a)) and under-
performing on Volkert (Figure 11(c)) with Gemini. AutoGen also
faces instability, requiring human intervention and failing to gen-
erate a pipeline for the Gas-Drift dataset after 15 attempts with
the Llama model. In contrast, CatDB delivers comparable or bet-
ter performance, albeit with higher variance, due to LLM-based
pre-processing, model selection, and independent interactions.

Costs and Runtime of Generated Pipelines: Figure 12 (Cost
part) shows the tokens consumed, where CatDB is more cost-
efficient than CatDB Chain, and both outperforming CAAFE. CatDB’s
cost stems from output size (1-2K tokens), while CAAFE is domi-
nated by input tokens. AIDE’s concise metadata and task descrip-
tions reduce initial costs but increase with iterative resubmissions
when errors occur. Its efficiency depends on the LLM: success-
ful generation minimizes cost (e.g., Figures 12(b) and 12(c) with
Gemini), while failures lead to more tokens (e.g., Figures 12(a)
and 12(b) with Llama). AutoGen’s approach mirrors CatDB, while
human-assisted frameworks consume fewer tokens (Figures 12(a)
and 12(c)). Figure 12 (Runtime part) compares total runtime for
pipeline generation and execution. On the small Diabetes dataset
(Figure 12(a)), CatDB and CatDB Chain achieve an 8x to 14x speedup
over CAAFE, with an even larger gap for datasets with many
features (Figures 12(b) and 12(c)) due to pre-processing before
feature engineering and model construction. Compared to AIDE

CatDB Chain CatDB Chain Error CatDB Chain PP∗ CatDB Chain PP∗ Error CatDB Chain FE∗ CatDB FE∗ Error
CatDB CatDB Error CAAFE R.Forest CAAFE TabPFN AIDE AutoGen

PP∗ = Pre-processing
FE ∗ = Feature Engineering

Gemini-1.5 Llama3.1-70b GPT-4o
0

4k
8k

12k
16k
20k

Airline

To
ke

n
Co

un
t

×
CA

A
FE

×
A

ID
E

×
CA

A
FE

×
A

ID
E

×
CA

A
FE

Gemini-1.5 Llama3.1-70b GPT-4o
0

4k

8k

12k IMDB

×
A

ID
E

×
CA

A
FE

×
A

ID
E

×
CA

A
FE

×
A

ID
E

×
CA

A
FE

Gemini-1.5 Llama3.1-70b GPT-4o
0

4k
8k

12k
16k Accidents

×
A

ID
E

×
Ta

bP
FN

×
A

ID
E

×
Ta

bP
FN

×
A

ID
E

×
Ta

bP
FN

Gemini-1.5 Llama3.1-70b GPT-4o
0

4k
8k

12k
16k
20k
24k

Financial

×
A

ID
E

×
Ta

bP
FN

×
A

ID
E

×
Ta

bP
FN

×
A

ID
E

×
Ta

bP
FN

Gemini-1.5 Llama3.1-70b GPT-4o

1k

10k

100k CMC

To
ke

n
Co

un
t

Gemini-1.5 Llama3.1-70b GPT-4o
0

5k

10k

15k

20k Bike-Sharing

Gemini-1.5 Llama3.1-70b GPT-4o
0

5k
10k
15k
20k
25k House-Sales

×
Au

to
Ge

n

Gemini-1.5 Llama3.1-70b GPT-4o
0

5k
10k
15k
20k NYC

Figure 13: Cost Comparison of 8 Datasets and Different LLMs (1 iteration).
CatDB CAAFE RandomForest Flaml Autogluon AutoSklearn H2O

0 1 2 3 4 5
Fail

0
20
40
60
80

100

Outlier Percentage [%]

𝑅
2

%

(a) Utility Outlier

0 10 20 30 40 50
Fail

0
20
40
60
80

100

Missing Percentage [%]

𝑅
2

%

(b) Utility Missing Value

0 10 20 30 40 50
Fail

0
20
40
60
80

100

Missing Percentage [%]

𝑅
2

%

(c) Utility MV + Outlier=5%

0 1 2 3 4 5
Fail

0
20
40
60
80

100

Outlier Percentage [%]
A

UC
-o

vr
%

(d) Volkert Outlier

0 10 20 30 40 50
Fail

0
20
40
60
80

100

Missing Percentage [%]

A
UC

-o
vr

%

(e) Volkert Missing Value

0 10 20 30 40 50
Fail

0
20
40
60
80

100

Missing Percentage [%]

A
UC

-o
vr

%

(f) Volkert MV + Outlier=5%

Figure 14: End-to-End Experiments with Outlier and Missing Value Injection (Gemini-1.5).

and AutoGen, CatDB generates more detailed instructions and
error handling, increasing processing time. In contrast to AIDE
and AutoGen—whose runtime variability depends on the LLM
performance—CatDB shows consistently moderate end-to-end run-
time and much smaller pipeline runtime.

5.5 Pipeline Performance with Single Iteration
We now compare CatDB with both LLM-based baselines and Au-
toML tools, for a single LLM repetition but up to 15 error correction
iterations. The time budget of AutoML tools (which we run for
multiple repetitions) was set to the measured CatDB runtime.

Quality of Generated Pipelines: Table 7 shows the results for
all classification (binary/multi-class) and regression tasks. Overall,
we see reliable performance of CatDB and CatDB Chain, even com-
pared to many state-of-the-art systems. Every row shows the test
AUC/𝑅2 for a dataset/LLM pair. CatDB and CatDB Chain achieve
a majority of top rankings. CatDB Chain yields generally better
performance for larger datasets—where the task splitting ensures
all tasks are represented properly (e.g., CatDB missed feature en-
gineering for CMC) and a reduced number of errors. In contrast,
CAAFE TabPFN failed on large datasets, and many AutoML tools
ran into out-of-memory errors or timeouts.

Costs of Generated Pipelines: We further reevaluate the token
consumption including initial prompts and error handling across
ten datasets. For CAAFE, AIDE, and AutoGen, only the total token
count was considered. Figure 13 shows that CatDB and CAAFE
have comparable costs, while CatDB Chain sometimes incurs higher
costs. Error management costs for CatDB and CatDB Chain vary
significantly across LLMs, with higher costs for regression tasks and
multi-table datasets. Most of CatDB Chain’s costs are due to error
management, especially with the Llama model, which struggled to
maintain the system conversation but eventually converged.

Table 8: Runtime of 8 Datasets Across Different LLMs [s].

Baseline Gemini-1.5 Llama3.1-70b GPT-4o
Fail AVG SUM Fail AVG SUM Fail AVG SUM

CatDB 0 7.5 60.1 0 7.4 58.9 0 19.6 156.5
CatDB Chain 0 8.1 65.1 0 7.4 59.5 0 14.5 116.1

CAAFE TabPFN 7 7.4 7.4 7 1.3 1.3 7 7.4 7.4
CAAFE R.Forest 5 34.2 102.7 5 22.7 68.0 5 22.6 67.9

AIDE 3 0.8 4.2 4 17.3 69.3 4 0.7 2.7
AutoGen 0 11.8 94.4 0 7.4 58.9 1 48.7 340.7

End-to-end Generation Runtime: Table 8 shows the end-to-
end runtime across eight datasets and various LLMs, including
the number of failed datasets (Fail), the average (AVG) and total
(SUM) runtimes for successful datasets (where the runtimes are
only comparable without failures). For CatDB, the reported run-
time includes data loading, catalog refinement, metadata projection,
rule definition, pipeline generation, error management, and execu-
tion. CAAFE succeeded on one small dataset with TabPFN and on
three with RandomForest but failed on larger datasets after four
days. Compared to the ten repetitions, CAAFE’s single data pre-
processing step dominates the runtime here. The AIDE and Auto-
Gen baselines lack pre-processing and error management, and their
runtime heavily dependent on LLMs. Llama-generated pipelines
often defaulted to naïve grid search, which substantially increases
the runtimes. These frameworks also spent more time retrying re-
quests (AIDE up to 20 times, AutoGen up to 15) and executing grid
search pipelines. In contrast, both CatDB and CatDB Chain, success-
fully run across all LLMs, datasets, and tasks. Additionally, CatDB’s
multi-threading rules further improved the runtime efficiency. Over-
all, CatDB achieves the best trade-off of good end-to-end runtime,
robustness in terms of rare failures, very fast pipeline runtime, and
high accuracy even with a single iteration.

5.6 Data-centric ML Pipelines
Finally, we study the impact of generating data-centric ML pipelines,
compared to AutoML tools (without pre-processing in end-to-end
experiments). AIDE and AutoGen were excluded due to frequent
failures and the need for human-generated descriptions and inter-
ventions. We use the Utility (regression) and Volkert (classification)
datasets and introduce outliers and missing values. Figure 14 shows
the impact of pre-processing primitives on model quality. Increas-
ing the ratio of outliers (from 0% to 5%), CatDB maintains good
performance, whereas all AutoML tools deteriorate for more than
1% data corruptions. In contrast, both CatDB and some AutoML
tools (Flaml and Autogluon) handle missing values quite well in
regression (see Figure 14(b)). In classification (see Figures 14(e) and
14(f)), most AutoML tools and CAAFE deteriorate. We further gen-
erate mixed errors (Figure 14(c) and 14(f)) where most AutoML
tools show again low performance. Generating data-centric ML
pipelines with CatDB robustly yields high prediction quality.

6 RELATED WORK
Our work is related to data catalogs, LLM-guided artifact generation,
data preparation for ML, and AutoML tools, which we survey here.

Data Catalogs and Refinements: Data catalogs are essential
for data governance, research data management (according to FAIR
data principles [81]), and data markets; with examples like Gaia-X
data catalogs [76], Apache Atlas [11], and Google dataset search
[14, 17, 32]. These catalogs store basic metadata, detailed data prove-
nance [20, 61], and data profiles [9]. KGLiDS [35] interlinks data
catalogs with abstract pipeline scripts and offers GNN-based au-
tomation for tasks like data cleaning and transformation, but it
lacks LLM support for complete pipeline generation. Some catalogs
also include index structures, embeddings, and data summaries
for dataset discovery and augmentation [67]. Most state-of-the-
art systems [8, 13, 24] rely on statistical and syntactic properties,
which can lead to incorrect feature type assignments in noisy data.
Recent approaches [71] improve feature type inference and dedu-
plication by training ML models on manually labeled data [72],
but still require manual labeling. In contrast, we leverage LLMs to
infer feature types and refine metadata, demonstrating improved
performance across diverse datasets and utilizing this information
for guiding LLM artifact generation.

LLM-guided Generation: LLMs like GPT [18], Gemini, and
Llama are extensively used to generate artifacts such as source code
[31, 38], queries [29], data wrangling programs [55], data analysis
pipelines, and visualizations, as well as for question answering [51].
This generation process allows for materialization, scrutiny, and
correction before deployment. Typically, LLMs are integrated into
data management systems by serializing data entries and predict-
ing masked tokens. Recently, GIDCL [84] combines LLMs with
Graph Neural Networks to improve data cleaning, whereas SMART-
FEAT [50] uses LLMs to generate new features from contextual
information and external knowledge. CAAFE [37] focuses on fea-
ture engineering but struggles to handle large datasets. In contrast,
CatDB generates scalable, end-to-end data-centric ML pipelines.

Data Preparation for ML: Data preparation methods in terms
of data validation [68], cleaning [30, 48, 74], and augmentation [22,
45] as well as feature engineering [63, 70] are crucial for high quality,

data-centric ML pipelines. First, data validation [12, 68, 78] summa-
rizes data characteristics and validates if expectations are satisfied
through constraints. Data visualization tools, such as Facets [65]
and TFDV [23, 62], further allow the semi-manual identification
of errors and anomalies. Second, data cleaning involves two main
tasks: error detection and correction. Tools like ActiveClean [44],
CPClean [41], and Learn2Clean [15] focus on specific models or
error types, such as missing values. Li et al. explored the impact of
basic data cleaning techniques on ML model accuracy [48]. Other
methods include evolutionary algorithms for finding effective data
cleaning pipelines [74] and feature engineering with fairness con-
straints [56, 66]. Third, data enrichment adds features to boost
model quality. Tools like FeatNavigator [49], SOS [43], and SAN-
TOS [42] automate the addition of relevant features from relational
tables by evaluating their importance for the downstream ML task.
Some frameworks use reinforcement learning for data augmenta-
tion [22] of additional synthetic data points, derived from a small
labeled dataset. Although these standalone methods are very effec-
tive, they cannot be seamlessly composed due to system boundary
crossing and specialized internal enumeration procedures. In con-
trast, CatDB first refines data catalog information (e.g., removing
duplicate categories) with iterative LLM interactions, and then
guides the LLM through metadata and instructions to generate
appropriate data-centric ML pipelines. We run the LLM-generated
lightweight ML pipelines without additional iterative search proce-
dures, yielding efficient and scalable execution plans.

AutoML Tools: Automating the process of model and feature se-
lection through AutoML tools is a well-studied problem [19, 26, 28,
47, 85]. Examples include Auto-Weka [79], Auto-Sklearn [25], Auto-
Keras, TPOT [58], H2O-AutoML [46], TuPaQ [75], Alpine Meadow
[73], KGpip [34], and AlphaD3M [52]. Most of these tools focus pri-
marily on model selection though. Recently, dedicated frameworks
aim to find data augmentation pipelines via reinforcement learn-
ing [22], data cleaning pipelines through evolutionary algorithms
[74], and feature engineering decisions under fairness and other
constraints [56, 66]. In contrast, CatDB generates data-centric ML
pipelines in a data-catalog-guided and LLM-based manner.

7 CONCLUSIONS
To summarize, we introduced CatDB as a holistic system for the
data-catalog-guided, LLM-based generation of effective and effi-
cient data-centric ML pipelines. Key technical contributions are
techniques for incorporating data catalog information and rules
into the LLM prompts, data catalog refinements, prompt chain-
ing, and error handling. We draw two major conclusions. First, the
LLM-based generation of data-centric ML pipelines with metadata
from data catalogs yields competitive pipeline accuracy with more
efficient pipelines compared to specialized tools for data cleaning
as well as AutoML tools. Second, dedicated pipeline validation and
error handling with a knowledge base of common errors and LLM
specifics, ensures reliable and trustworthy pipelines. Interesting
future work includes (1) a more fine-grained, task-specific encoding
of metadata into prompts, (2) generating high-performance and
scalable ML pipelines (e.g., distributed or specialized accelerators),
and (3) LLM-based reasoning agents for natural language insights
and automated explanations in data-centric ML pipelines.

REFERENCES
[1] 2021. State of Data Science and Machine Learning. https://www.kaggle.com/

kaggle-survey-2021
[2] 2024. Artifici Alanalysis. https://artificialanalysis.ai/models/mixtral-8x7b-

instruct/providers#summary
[3] 2024. ast: Abstract Syntax Trees. https://docs.python.org/3/library/ast.html
[4] 2024. Google AI Studio. https://aistudio.google.com/
[5] 2024. Groq Cloud. https://console.groq.com/
[6] 2024. OpenAI. https://platform.openai.com/
[7] 2024. Scikit-learn: Machine Learning in Python. https://scikit-learn.org/stable/
[8] 2024. TransmogrifAI: Automated Machine Learning for Structured Data. https:

//github.com/salesforce/TransmogrifAI
[9] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2017. Data Profiling: A

Tutorial. In SIGMOD. 1747–1751. https://doi.org/10.1145/3035918.3054772
[10] AI@Meta. 2024. Llama 3 Model Card. (2024). https://github.com/meta-llama/

llama3/blob/main/MODEL_CARD.md
[11] Apache Atlas. 2020. Open Metadata Management and Governance. https:

//atlas.apache.org/.
[12] Florian Bachinger, Lisa Ehrlinger, Gabriel Kronberger, and Wolfram Wöß. 2024.

Data Validation Utilizing Expert Knowledge and Shape Constraints. ACM J. Data
Inf. Qual. 16, 2 (2024), 13:1–13:27. https://doi.org/10.1145/3661826

[13] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria
Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, Chiu Yuen Koo,
Lukasz Lew, Clemens Mewald, Akshay Naresh Modi, Neoklis Polyzotis, Sukriti
Ramesh, Sudip Roy, Steven Euijong Whang, Martin Wicke, Jarek Wilkiewicz, Xin
Zhang, and Martin Zinkevich. 2017. TFX: A TensorFlow-Based Production-Scale
Machine Learning Platform. In SIGKDD. 1387–1395. https://doi.org/10.1145/
3097983.3098021

[14] Omar Benjelloun, Shiyu Chen, and Natasha F. Noy. 2020. Google Dataset Search
by the Numbers. In ISWC, Vol. 12507. 667–682. https://doi.org/10.1007/978-3-
030-62466-8_41

[15] Laure Berti-Équille. 2019. Learn2Clean: Optimizing the Sequence of Tasks for
Web Data Preparation. 2580–2586. https://doi.org/10.1145/3308558.3313602

[16] Matthias Boehm, Iulian Antonov, Sebastian Baunsgaard, Mark Dokter, Robert
Ginthör, Kevin Innerebner, Florijan Klezin, Stefanie N. Lindstaedt, Arnab Phani,
Benjamin Rath, Berthold Reinwald, Shafaq Siddiqui, and Sebastian Benjamin
Wrede. 2020. SystemDS: A Declarative Machine Learning System for the End-
to-End Data Science Lifecycle. In CIDR. http://cidrdb.org/cidr2020/papers/p22-
boehm-cidr20.pdf

[17] Dan Brickley, Matthew Burgess, and Natasha F. Noy. 2019. Google Dataset
Search: Building a search engine for datasets in an open Web ecosystem. In
WWW. 1365–1375. https://doi.org/10.1145/3308558.3313685

[18] Tom B. Brown et al. 2020. Language Models are Few-Shot Learn-
ers. In NeurIPS. https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[19] Girish Chandrashekar and Ferat Sahin. 2014. A survey on feature selection
methods. Computers & Electrical Engineering 40, 1 (2014), 16–28. https://doi.org/
10.1016/J.COMPELECENG.2013.11.024

[20] James Cheney, Laura Chiticariu, and Wang Chiew Tan. 2009. Provenance in
Databases: Why, How, and Where. Found. Trends Databases 1, 4 (2009), 379–474.
https://doi.org/10.1561/1900000006

[21] Jeffrey Cohen, Brian Dolan, Mark Dunlap, Joseph M. Hellerstein, and Caleb
Welton. 2009. MAD Skills: New Analysis Practices for Big Data. PVLDB 2, 2
(2009), 1481–1492. https://doi.org/10.14778/1687553.1687576

[22] Ekin D. Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V. Le.
2019. AutoAugment: Learning Augmentation Strategies From Data. In CVPR.
113–123. https://doi.org/10.1109/CVPR.2019.00020

[23] Mike Dreves, Gene Huang, Zhuo Peng, Neoklis Polyzotis, Evan Rosen, and Paul
Suganthan G. C. 2021. Validating Data and Models in Continuous ML Pipelines.
IEEE Data Eng. Bull. 44, 1 (2021), 42–50. http://sites.computer.org/debull/A21mar/
p42.pdf

[24] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy,
Mu Li, and Alexander J. Smola. 2020. AutoGluon-Tabular: Robust and Accurate
AutoML for Structured Data. CoRR abs/2003.06505 (2020). https://arxiv.org/abs/
2003.06505

[25] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and
Frank Hutter. 2022. Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning. J.
Mach. Learn. Res. 23 (2022). http://jmlr.org/papers/v23/21-0992.html

[26] Matthias Feurer and Frank Hutter. 2019. Hyperparameter optimization. Auto-
mated machine learning: Methods, systems, challenges (2019), 3–33.

[27] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg,
Manuel Blum, and Frank Hutter. 2015. Efficient and Robust Automated Machine
Learning. In NeurIPS. 2962–2970. https://proceedings.neurips.cc/paper/2015/
hash/11d0e6287202fced83f79975ec59a3a6-Abstract.html

[28] George Forman. 2003. An Extensive Empirical Study of Feature Selection Metrics
for Text Classification. Journal of Machine Learning Research 3 (2003), 1289–1305.
http://jmlr.org/papers/v3/forman03a.html

[29] Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and
Jingren Zhou. 2023. Text-to-SQL Empowered by Large Language Models: A
Benchmark Evaluation. CoRR (2023). https://doi.org/10.48550/ARXIV.2308.15363

[30] Shubha Guha, Falaah Arif Khan, Julia Stoyanovich, and Sebastian Schelter. 2023.
Automated Data Cleaning Can Hurt Fairness in Machine Learning-based Deci-
sion Making. In ICDE. 3747–3754. https://doi.org/10.1109/ICDE55515.2023.00303

[31] Chunxi Guo, Zhiliang Tian, Jintao Tang, Pancheng Wang, Zhihua Wen, Kang
Yang, and Ting Wang. 2023. Prompting GPT-3.5 for Text-to-SQL with De-
semanticization and Skeleton Retrieval (Lecture Notes in Computer Science).
Springer, 262–274. https://doi.org/10.1007/978-981-99-7022-3_23

[32] Alon Y. Halevy, Flip Korn, Natalya Fridman Noy, Christopher Olston, Neoklis
Polyzotis, Sudip Roy, and Steven Euijong Whang. 2016. Goods: Organizing
Google’s Datasets. In SIGMOD. 795–806. https://doi.org/10.1145/2882903.2903730

[33] Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. 2008. ADASYN: Adaptive
synthetic sampling approach for imbalanced learning. In IJCNN. 1322–1328.
https://doi.org/10.1109/IJCNN.2008.4633969

[34] Mossad Helali, Essam Mansour, Ibrahim Abdelaziz, and et al. 2022. A Scalable
AutoML Approach Based on Graph Neural Networks. PVLDB 15, 11 (2022).
https://www.vldb.org/pvldb/vol15/p2428-helali.pdf

[35] Mossad Helali, Niki Monjazeb, Shubham Vashisth, Philippe Carrier, Ahmed
Helal, Antonio Cavalcante, Khaled Ammar, Katja Hose, and Essam Mansour.
2024. KGLiDS: A Platform for Semantic Abstraction, Linking, and Automation
of Data Science. In ICDE.

[36] Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. 2023.
TabPFN: A Transformer That Solves Small Tabular Classification Problems in
a Second. In The Eleventh International Conference on Learning Representations.
https://openreview.net/forum?id=cp5PvcI6w8_

[37] Noah Hollmann, Samuel Müller, and Frank Hutter. 2023. Large Language Models
for Automated Data Science: Introducing CAAFE for Context-Aware Automated
Feature Engineering. In NeurIPS. https://arxiv.org/pdf/2305.03403

[38] Abhinav Jain, Chima Adiole, Swarat Chaudhuri, Thomas W. Reps, and Chris
Jermaine. 2023. Tuning Models of Code with Compiler-Generated Reinforcement
Learning Feedback. CoRR (2023). https://doi.org/10.48550/ARXIV.2305.18341

[39] Michael I. Jordan. 2018. SysML: Perspectives and Challenges. In MLSys.
[40] Adam Tauman Kalai and Santosh S. Vempala. 2023. Calibrated Language Models

Must Hallucinate. CoRR abs/2311.14648 (2023). https://doi.org/10.48550/ARXIV.
2311.14648

[41] Bojan Karlas, Peng Li, Renzhi Wu, Nezihe Merve Gürel, Xu Chu, Wentao Wu,
and Ce Zhang. 2020. Nearest Neighbor Classifiers over Incomplete Information:
From Certain Answers to Certain Predictions. PVLDB 14, 3 (2020), 255–267.
https://doi.org/10.5555/3430915.3442426

[42] Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatter-
bauer, Renée J. Miller, and Mirek Riedewald. 2023. SANTOS: Relationship-
based Semantic Table Union Search. SIGMOD 1, 1 (2023), 9:1–9:25. https:
//doi.org/10.1145/3588689

[43] Jayoung Kim, Chaejeong Lee, Yehjin Shin, Sewon Park, Minjung Kim, Noseong
Park, and Jihoon Cho. 2022. SOS: Score-based Oversampling for Tabular Data.
In SIGKDD. 762–772. https://doi.org/10.1145/3534678.3539454

[44] Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J. Franklin, and Ken Gold-
berg. 2016. ActiveClean: Interactive Data Cleaning For Statistical Modeling.
PVLDB 9, 12 (2016), 948–959. http://www.vldb.org/pvldb/vol9/p948-krishnan.pdf

[45] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Ima-
geNet Classification with Deep Convolutional Neural Networks. In
NeurIPS. 1106–1114. https://proceedings.neurips.cc/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.html

[46] Erin LeDell and Sebastien Poirier. 2020. H2o automl: Scalable automatic machine
learning. In Proceedings of the AutoML Workshop at ICML, Vol. 2020. ICML.

[47] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P. Trevino,
Jiliang Tang, and Huan Liu. 2018. Feature Selection: A Data Perspective. Comput.
Surveys 50, 6 (2018), 94:1–94:45. https://doi.org/10.1145/3136625

[48] Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang. 2021. CleanML:
A Study for Evaluating the Impact of Data Cleaning on ML Classification Tasks.
In ICDE. 13–24. https://doi.org/10.1109/ICDE51399.2021.00009

[49] Jiaming Liang, Chuan Lei, Xiao Qin, Jiani Zhang, Asterios Katsifodimos, Chris-
tos Faloutsos, and Huzefa Rangwala. 2024. FeatNavigator: Automatic Fea-
ture Augmentation on Tabular Data. CoRR abs/2406.09534 (2024). https:
//doi.org/10.48550/ARXIV.2406.09534

[50] Yin Lin, Bolin Ding, H. V. Jagadish, and Jingren Zhou. 2024. SMARTFEAT: Effi-
cient Feature Construction through Feature-Level Foundation Model Interactions.
In CIDR. www.cidrdb.org. https://www.cidrdb.org/cidr2024/papers/p72-lin.pdf

[51] Yiming Lin, Madelon Hulsebos, Ruiying Ma, Shreya Shankar, Sepanta Zeighami,
Aditya G. Parameswaran, and Eugene Wu. 2024. Towards Accurate and Efficient
Document Analytics with Large Language Models. CoRR abs/2405.04674 (2024).
https://doi.org/10.48550/ARXIV.2405.04674

[52] Roque Lopez, Raoni Lourenço, Rémi Rampin, Sonia Castelo, Aécio S. R. San-
tos, Jorge Henrique Piazentin Ono, Cláudio T. Silva, and Juliana Freire. 2023.
AlphaD3M: An Open-Source AutoML Library for Multiple ML Tasks. In Inter-
national Conference on Automated Machine Learning (PMLR), Vol. 224. 22/1–22.
https://proceedings.mlr.press/v224/lopez23a.html

https://www.kaggle.com/kaggle-survey-2021
https://www.kaggle.com/kaggle-survey-2021
https://artificialanalysis.ai/models/mixtral-8x7b-instruct/providers#summary
https://artificialanalysis.ai/models/mixtral-8x7b-instruct/providers#summary
https://docs.python.org/3/library/ast.html
https://aistudio.google.com/
https://console.groq.com/
https://platform.openai.com/
https://scikit-learn.org/stable/
https://github.com/salesforce/TransmogrifAI
https://github.com/salesforce/TransmogrifAI
https://doi.org/10.1145/3035918.3054772
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://atlas.apache.org/
https://atlas.apache.org/
https://doi.org/10.1145/3661826
https://doi.org/10.1145/3097983.3098021
https://doi.org/10.1145/3097983.3098021
https://doi.org/10.1007/978-3-030-62466-8_41
https://doi.org/10.1007/978-3-030-62466-8_41
https://doi.org/10.1145/3308558.3313602
http://cidrdb.org/cidr2020/papers/p22-boehm-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p22-boehm-cidr20.pdf
https://doi.org/10.1145/3308558.3313685
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1016/J.COMPELECENG.2013.11.024
https://doi.org/10.1016/J.COMPELECENG.2013.11.024
https://doi.org/10.1561/1900000006
https://doi.org/10.14778/1687553.1687576
https://doi.org/10.1109/CVPR.2019.00020
http://sites.computer.org/debull/A21mar/p42.pdf
http://sites.computer.org/debull/A21mar/p42.pdf
https://arxiv.org/abs/2003.06505
https://arxiv.org/abs/2003.06505
http://jmlr.org/papers/v23/21-0992.html
https://proceedings.neurips.cc/paper/2015/hash/11d0e6287202fced83f79975ec59a3a6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/11d0e6287202fced83f79975ec59a3a6-Abstract.html
http://jmlr.org/papers/v3/forman03a.html
https://doi.org/10.48550/ARXIV.2308.15363
https://doi.org/10.1109/ICDE55515.2023.00303
https://doi.org/10.1007/978-981-99-7022-3_23
https://doi.org/10.1145/2882903.2903730
https://doi.org/10.1109/IJCNN.2008.4633969
https://www.vldb.org/pvldb/vol15/p2428-helali.pdf
https://openreview.net/forum?id=cp5PvcI6w8_
https://arxiv.org/pdf/2305.03403
https://doi.org/10.48550/ARXIV.2305.18341
https://doi.org/10.48550/ARXIV.2311.14648
https://doi.org/10.48550/ARXIV.2311.14648
https://doi.org/10.5555/3430915.3442426
https://doi.org/10.1145/3588689
https://doi.org/10.1145/3588689
https://doi.org/10.1145/3534678.3539454
http://www.vldb.org/pvldb/vol9/p948-krishnan.pdf
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1145/3136625
https://doi.org/10.1109/ICDE51399.2021.00009
https://doi.org/10.48550/ARXIV.2406.09534
https://doi.org/10.48550/ARXIV.2406.09534
https://www.cidrdb.org/cidr2024/papers/p72-lin.pdf
https://doi.org/10.48550/ARXIV.2405.04674
https://proceedings.mlr.press/v224/lopez23a.html

[53] Mark Mazumder et al. 2022. DataPerf: Benchmarks for Data-Centric AI Develop-
ment. CoRR abs/2207.10062 (2022). https://doi.org/10.48550/ARXIV.2207.10062

[54] Rohan Mukherjee, Chris Jermaine, and Swarat Chaudhuri. 2020. Searching a
Database of Source Codes Using Contextualized Code Search. PVLDB (2020),
1765–1778. https://doi.org/10.14778/3401960.3401972

[55] Avanika Narayan, Ines Chami, Laurel J. Orr, and Christopher Ré. 2022. Can
Foundation Models Wrangle Your Data? PVLDB 16, 4 (2022), 738–746. https:
//doi.org/10.14778/3574245.3574258

[56] Felix Neutatz, Marius Lindauer, and Ziawasch Abedjan. 2024. AutoML in heavily
constrained applications. VLDB J. 33, 4 (2024), 957–979. https://doi.org/10.1007/
S00778-023-00820-1

[57] Luis Oala et al. 2023. DMLR: Data-centric Machine Learning Research - Past,
Present and Future. CoRR abs/2311.13028 (2023). https://doi.org/10.48550/ARXIV.
2311.13028

[58] Randal S. Olson and Jason H. Moore. 2016. TPOT: A Tree-based Pipeline Op-
timization Tool for Automating Machine Learning, Vol. 64. JMLR.org. http:
//proceedings.mlr.press/v64/olson_tpot_2016.html

[59] OpenAI. 2024. GPT-4o. (2024). https://openai.com/index/hello-gpt-4o/
[60] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. 2018.

Efficient Neural Architecture Search via Parameter Sharing. In ICML, Vol. 80.
4092–4101. http://proceedings.mlr.press/v80/pham18a.html

[61] Arnab Phani, Benjamin Rath, and Matthias Boehm. 2021. LIMA: Fine-grained
Lineage Tracing and Reuse in Machine Learning Systems. In SIGMOD. 1426–1439.
https://doi.org/10.1145/3448016.3452788

[62] Neoklis Polyzotis, Martin Zinkevich, Sudip Roy, Eric Breck, and Steven
Whang. 2019. Data Validation for Machine Learning. In MLSys, Vol. 1.
334–347. https://proceedings.mlsys.org/paper_files/paper/2019/file/
928f1160e52192e3e0017fb63ab65391-Paper.pdf

[63] Danrui Qi, Jinglin Peng, Yongjun He, and Jiannan Wang. 2024. Auto-FP: An
Experimental Study of Automated Feature Preprocessing for Tabular Data. 129–
142. https://doi.org/10.48786/EDBT.2024.12

[64] Nikitha Rao, Jason Tsay, Kiran Kate, Vincent J. Hellendoorn, and Martin Hirzel.
2023. AI for Low-Code for AI. CoRR abs/2305.20015 (2023). https://doi.org/10.
48550/ARXIV.2305.20015

[65] Sergey Redyuk, Zoi Kaoudi, Volker Markl, and Sebastian Schelter. 2021. Au-
tomating Data Quality Validation for Dynamic Data Ingestion. In EDBT. 61–72.
https://doi.org/10.5441/002/EDBT.2021.07

[66] Ricardo Salazar, Felix Neutatz, and Ziawasch Abedjan. 2021. Automated Feature
Engineering for Algorithmic Fairness. PVLDB 14, 9 (2021), 1694–1702. https:
//doi.org/10.14778/3461535.3463474

[67] Aécio S. R. Santos, Aline Bessa, Fernando Chirigati, Christopher Musco, and
Juliana Freire. 2021. Correlation Sketches for Approximate Join-Correlation
Queries. In SIGMOD. 1531–1544. https://doi.org/10.1145/3448016.3458456

[68] Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix Bieß-
mann, and Andreas Grafberger. 2018. Automating Large-Scale Data Quality
Verification. PVLDB 11, 12 (2018), 1781–1794. https://doi.org/10.14778/3229863.
3229867

[69] Dominik Schmidt, Yuxiang Wu, and Zhengyao Jiang. 2024. AIDE: Human-Level
Performance in Data Science Competitions. https://www.weco.ai/blog/technical-
report

[70] Vraj Shah, Jonathan Lacanlale, Premanand Kumar, Kevin Yang, and Arun Kumar.
2021. Towards Benchmarking Feature Type Inference for AutoML Platforms. In

SIGMOD. 1584–1596. https://doi.org/10.1145/3448016.3457274
[71] Vraj Shah, Jonathan Lacanlale, Premanand Kumar, Kevin Yang, and Arun Kumar.

2021. Towards Benchmarking Feature Type Inference for AutoML Platforms. In
SIGMOD. 1584–1596. https://doi.org/10.1145/3448016.3457274

[72] Vraj Shah, Thomas J. Parashos, and Arun Kumar. 2024. How do Categorical
Duplicates Affect ML? A New Benchmark and Empirical Analyses. PVLDB 17, 6
(2024), 1391–1404. https://www.vldb.org/pvldb/vol17/p1391-shah.pdf

[73] Zeyuan Shang, Emanuel Zgraggen, Benedetto Buratti, Ferdinand Kossmann,
Philipp Eichmann, Yeounoh Chung, Carsten Binnig, Eli Upfal, and Tim Kraska.
2019. Democratizing Data Science through Interactive Curation of ML Pipelines.
In SIGMOD. 1171–1188. https://doi.org/10.1145/3299869.3319863

[74] Shafaq Siddiqi, Roman Kern, and Matthias Boehm. 2023. SAGA: A Scalable Frame-
work for Optimizing Data Cleaning Pipelines for Machine Learning Applications.
Proc. ACMManag. Data 1, 3 (2023), 218:1–218:26. https://doi.org/10.1145/3617338

[75] Evan R. Sparks, Ameet Talwalkar, Daniel Haas, Michael J. Franklin, Michael I.
Jordan, and Tim Kraska. 2015. Automating model search for large scale machine
learning. In SoCC. 368–380. https://doi.org/10.1145/2806777.2806945

[76] Hubert Tardieu. 2022. Role of Gaia-X in the European Data Space Ecosystem. In
Designing Data Spaces: The Ecosystem Approach to Competitive Advantage. 41–59.
https://doi.org/10.1007/978-3-030-93975-5_4

[77] Gemini Team. 2024. Gemini 1.5: Unlocking multimodal understanding across
millions of tokens of context. https://doi.org/10.48550/arXiv.2403.05530

[78] Saravanan Thirumuruganathan, Nan Tang, Mourad Ouzzani, and AnHai Doan.
2020. Data Curation with Deep Learning. In EDBT. 277–286. https://doi.org/10.
5441/002/EDBT.2020.25

[79] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2013.
Auto-WEKA: combined selection and hyperparameter optimization of classifica-
tion algorithms. In SIGKDD. 847–855. https://doi.org/10.1145/2487575.2487629

[80] Chi Wang, Qingyun Wu, Markus Weimer, and Erkang Zhu. 2021. FLAML: A
Fast and Lightweight AutoML Library. In MLSys. https://proceedings.mlsys.org/
paper/2021/hash/92cc227532d17e56e07902b254dfad10-Abstract.html

[81] Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Apple-
ton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino
da Silva Santos, Philip E Bourne, et al. 2016. The FAIR Guiding Principles
for scientific data management and stewardship. Scientific data 3 (2016).
https://www.nature.com/articles/sdata201618

[82] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li
Jiang, Xiaoyun Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah,
Ryen W White, Doug Burger, and Chi Wang. 2024. AutoGen: Enabling Next-Gen
LLM Applications via Multi-Agent Conversation. In ICLR 2024Workshop on Large
Language Model (LLM) Agents. https://openreview.net/forum?id=uAjxFFing2

[83] Wenglei Wu, Nicholas Kunz, and Paula Branco. 2022.
Imbalancedlearningregression-a python package to tackle the imbalanced
regression problem. In ECML PKDD. 645–648.

[84] Mengyi Yan, Yaoshu Wang, Yue Wang, Xiaoye Miao, and Jianxin Li. 2024. GIDCL:
A Graph-Enhanced Interpretable Data Cleaning Framework with Large Language
Models. SIGMOD 2, 6 (2024), 236:1–236:29. https://doi.org/10.1145/3698811

[85] Li Yang and Abdallah Shami. 2020. On hyperparameter optimization of machine
learning algorithms: Theory and practice. Neurocomputing 415 (2020), 295–316.
https://www.sciencedirect.com/science/article/pii/S0925231220311693

https://doi.org/10.48550/ARXIV.2207.10062
https://doi.org/10.14778/3401960.3401972
https://doi.org/10.14778/3574245.3574258
https://doi.org/10.14778/3574245.3574258
https://doi.org/10.1007/S00778-023-00820-1
https://doi.org/10.1007/S00778-023-00820-1
https://doi.org/10.48550/ARXIV.2311.13028
https://doi.org/10.48550/ARXIV.2311.13028
http://proceedings.mlr.press/v64/olson_tpot_2016.html
http://proceedings.mlr.press/v64/olson_tpot_2016.html
https://openai.com/index/hello-gpt-4o/
http://proceedings.mlr.press/v80/pham18a.html
https://doi.org/10.1145/3448016.3452788
https://proceedings.mlsys.org/paper_files/paper/2019/file/928f1160e52192e3e0017fb63ab65391-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2019/file/928f1160e52192e3e0017fb63ab65391-Paper.pdf
https://doi.org/10.48786/EDBT.2024.12
https://doi.org/10.48550/ARXIV.2305.20015
https://doi.org/10.48550/ARXIV.2305.20015
https://doi.org/10.5441/002/EDBT.2021.07
https://doi.org/10.14778/3461535.3463474
https://doi.org/10.14778/3461535.3463474
https://doi.org/10.1145/3448016.3458456
https://doi.org/10.14778/3229863.3229867
https://doi.org/10.14778/3229863.3229867
https://www.weco.ai/blog/technical-report
https://www.weco.ai/blog/technical-report
https://doi.org/10.1145/3448016.3457274
https://doi.org/10.1145/3448016.3457274
https://www.vldb.org/pvldb/vol17/p1391-shah.pdf
https://doi.org/10.1145/3299869.3319863
https://doi.org/10.1145/3617338
https://doi.org/10.1145/2806777.2806945
https://doi.org/10.1007/978-3-030-93975-5_4
https://doi.org/10.48550/arXiv.2403.05530
https://doi.org/10.5441/002/EDBT.2020.25
https://doi.org/10.5441/002/EDBT.2020.25
https://doi.org/10.1145/2487575.2487629
https://proceedings.mlsys.org/paper/2021/hash/92cc227532d17e56e07902b254dfad10-Abstract.html
https://proceedings.mlsys.org/paper/2021/hash/92cc227532d17e56e07902b254dfad10-Abstract.html
https://www.nature.com/articles/sdata201618
https://openreview.net/forum?id=uAjxFFing2
https://doi.org/10.1145/3698811
https://www.sciencedirect.com/science/article/pii/S0925231220311693

	Abstract
	1 Introduction
	2 CatDB System Overview
	3 Catalog and Prompt Construction
	3.1 Data Catalog
	3.2 Data Catalog Refinements
	3.3 Metadata Projection and Rule Definition
	3.4 Overall Prompt Construction

	4 Pipeline Generation and Validation
	4.1 Overall Pipeline Generation
	4.2 Validation and Pipeline Error Management
	4.3 System Limitations

	5 Experiments
	5.1 Experimental Setting
	5.2 Prompt Construction and Metadata Impact
	5.3 Catalog Refinement and Data Cleaning
	5.4 Pipeline Performance with 10 Iterations
	5.5 Pipeline Performance with Single Iteration
	5.6 Data-centric ML Pipelines

	6 Related Work
	7 Conclusions
	References

