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Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.

1 Introduction

Current approaches to object recognition make essential use of machine learning methods. To im-
prove their performance, we can collect larger datasets, learn more powerful models, and use bet-
ter techniques for preventing overfitting. Until recently, datasets of labeled images were relatively
small — on the order of tens of thousands of images (e.g., NORB [16], Caltech-101/256 [8, 9], and
CIFAR-10/100 [12]). Simple recognition tasks can be solved quite well with datasets of this size,
especially if they are augmented with label-preserving transformations. For example, the current-
best error rate on the MNIST digit-recognition task (<0.3%) approaches human performance [4].
But objects in realistic settings exhibit considerable variability, so to learn to recognize them it is
necessary to use much larger training sets. And indeed, the shortcomings of small image datasets
have been widely recognized (e.g., Pinto et al. [21]), but it has only recently become possible to col-
lect labeled datasets with millions of images. The new larger datasets include LabelMe [23], which
consists of hundreds of thousands of fully-segmented images, and ImageNet [6], which consists of
over 15 million labeled high-resolution images in over 22,000 categories.

To learn about thousands of objects from millions of images, we need a model with a large learning
capacity. However, the immense complexity of the object recognition task means that this prob-
lem cannot be specified even by a dataset as large as ImageNet, so our model should also have lots
of prior knowledge to compensate for all the data we don’t have. Convolutional neural networks
(CNNs) constitute one such class of models [16, 11, 13, 18, 15, 22, 26]. Their capacity can be con-
trolled by varying their depth and breadth, and they also make strong and mostly correct assumptions
about the nature of images (namely, stationarity of statistics and locality of pixel dependencies).
Thus, compared to standard feedforward neural networks with similarly-sized layers, CNNs have
much fewer connections and parameters and so they are easier to train, while their theoretically-best
performance is likely to be only slightly worse.

1

[e.g., Alex Krizhevsky
ImageNet 2012
Challenge Winner]
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Motivation

Raw Data
Table #1
𝑐1 𝑐2 ...
1 a ...
2 - ...
... ... ...

Table #2
𝑐1 𝑐2 ...
A 0 ..
B 1 ...
... .. ...

.......

Table #N
𝑐1 𝑐2 ... target (y)
1 A ... Yes
2 0 ... No
... ... ... ...

How to Automatically and Efficiently
Build a Data-centric ML Pipeline?

1: import pandas as pd
2: import SimpleImputer
3: import OneHotEncoder
4: import ColumnTransformer
5: import Pipeline
6: import RandomForestRegressor
7: import r2_score

8: trai = pd.read_csv("train.csv")
9: test = pd.read_csv("test.csv")

10: ca = ["Experience", "Gender"]
11: cat = Pipeline(steps=[

("imputer", SimpleImputer(....
("onehot", OneHotEncoder(...

12: preprocessor = ColumnTransformer(
transformers = [("cat",...)]

13: model = RandomForestRegressor(...)
14: p = Pipeline(steps=[ ....])

15: p.fit(X_train, y_train)
16: y_test_pred = p.predict(X_test)

ML Pipeline

CatDB

CatDB: Data-catalog-guided, LLM-based Generation of Data-centric ML Pipelines Saeed Fathollahzadeh 7 / 21



Data-centric ML pipeline generation in CatDB

User Descriptions:

X Task Description
4 Dataset Description

Data Profiling:

¨ Extract Dependencies
¡ Profile Raw Data
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Data-centric ML pipeline generation in CatDB
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Data-centric ML pipeline generation in CatDB
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CatDB-generated prompt & resulting pipeline
Sy
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s
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a

### Task: Generate a data science pipeline in Python 3.10.

### Input: A dataset in CSV format, a schema that describes the columns and data types of the dataset,
and a data profiling info that summarizes the statistics and quality of the dataset.

### Output: A pipeline code that performs the following steps:

#1: Import the necessary libraries and modules.

#2: Load the training and test datasets. For the training data, utilize the variable
"train_data.csv", and for the test data, employ the variable "test_data.csv".

#3: The user will provide the Schema, and Data Profiling Info of the dataset with columns
appropriately named as attributes.

#4: Perform missing value imputation for features ’Address’ and ’Zip’.

#5: Perform feature extraction (dataset contains categorical values).

#6: Perform feature selection (redundant columns e.g., ’Address’ and ’Zip’).

#7: Select an appropriate ML algorithm.

#8: Assign a default value to a particular hyperparameter.

#9: Evaluate the model.

### Dataset Description: A The dataset was obtained from multiple sources, including surveys, job
posting sites, and other publicly available sources.A total of 6704 data points were collected.The
dataset included fivevariables: age, experience, job role, and education level and salary.

### Schema, and Data Profiling Info:

# Experience (string), distinct [ 60% ], missing [ 0% ], categorical-vals [1 year, 2 years, 3 years]
# Gender (string), distinct [ 40% ], missing [ 0% ], categorical-vals [ Male, Female ]
# Address (string), distinct [ 40% ], missing [ 20% ], categorical-vals [ CA, TX ]
# Zip (string), distinct [ 40% ], missing [ 40% ], categorical-vals [ 7050, 7871 ]

# Salary (int, target feature), min-max vals [ 100, 310 ], total-vals [ 5 ]

### Categorical Features: Experience, Gender, Address, Zip

1: import pandas as pd
2: from sklearn.impute import SimpleImputer
3: from sklearn.preprocessing import OneHotEncoder
4: from sklearn.compose import ColumnTransformer
5: from sklearn.pipeline import Pipeline
6: from sklearn.ensemble import RandomForestRegressor
7: from sklearn.metrics import r2_score

8: train_data = pd.read_csv("train_data.csv")
9: test_data = pd.read_csv("test_data.csv")

10: categorical_features = ["Experience", "Gender", "Address", "Zip"]
11: categorical_transformer = Pipeline(steps=[

("imputer", SimpleImputer(strategy="most_frequent")),
("onehot", OneHotEncoder(handle_unknown="ignore"))])

12: preprocessor = ColumnTransformer(
transformers = [("cat", categorical_transformer, categorical_features)],
remainder="drop" )

13: model = RandomForestRegressor(n_estimators=100, random_state=42)
14: pipeline = Pipeline(steps=[ ("preprocessor", preprocessor), ("model", model)])

15: X_train = train_data.drop("Salary", axis=1)
16: y_train = train_data["Salary"]
17: X_test = test_data.drop("Salary", axis=1)
18: y_test = test_data["Salary"]

19: pipeline.fit(X_train, y_train)
20: y_test_pred = pipeline.predict(X_test)

21: test_r2 = r2_score(y_test, y_test_pred)

22: print(f"Test 𝑅2: {test_r2}")

+

+
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Example: Pipeline DAG in SOTA vs. CatDB

Salary dataset: comma-separated CSV file

Target feature: "Salary"

Experience Skills Gender Address Salary

12 Months SQL,Java F 7050 CA 100

two years JavaScript Female TX 7871 150

36 months C/C++,.Net M Texas 300

3 Years JS,CPP,SQL Female 7871 310

one Year Python Male CA 200

2 Years C#,Java 0 TX 175

LLM

1 Load Dataset

2 Hash Categorical Feature
Gender: {M, F, Male, Female}

3 Train Model

Ac
cu
ra
cy

[%
]

39.2
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Example: Pipeline DAG in SOTA vs. CatDB

Salary dataset: comma-separated CSV file

Target feature: "Salary"

Experience Skills Gender Address Salary

12 Months SQL,Java F 7050 CA 100

two years JavaScript Female TX 7871 150

36 months C/C++,.Net M Texas 300

3 Years JS,CPP,SQL Female 7871 310

one Year Python Male CA 200

2 Years C#,Java 0 TX 175

LLM
1 Load Dataset

2 Deduplicate Categorical Values
Experience: Replace(12 Months:1 year, ..)

Skills: Replace(CPP:C++, .Net:C#, ..)

Gender: Replace(F:Female, M:Male)

3 Decompose Features

Address: Split to State and ZipCode

4 Infer Feature Type
Skills: Set as List Type

5 Feature Selection

Address: Keep ZipCode & Remove State

6 Feature Hashing

7 Train Model

Ac
cu
ra
cy

[%
]

39.2

91.8
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Example of Data Catalog Update and Data Cleaning

Salary dataset: comma-separated CSV file

Target feature: "Salary"

Experience Skills Gender Address Salary

12 Months SQL,Java F 7050 CA 100

two years JavaScript Female TX 7871 150

36 months C/C++,.Net M Texas 300

3 Years JS,CPP,SQL Female 7871 310

one Year Python Male CA 200

2 Years C#,Java 0 TX 175

Raw Dataset
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Example of Data Catalog Update and Data Cleaning

Salary dataset: comma-separated CSV file

Target feature: "Salary"

Experience Skills Gender Address Salary

12 Months SQL,Java F 7050 CA 100

two years JavaScript Female TX 7871 150

36 months C/C++,.Net M Texas 300

3 Years JS,CPP,SQL Female 7871 310

one Year Python Male CA 200

2 Years C#,Java 0 TX 175

Raw Dataset
Clean Dataset

# Experience Gender State Zip C++ ... Python Salary
0 ... 0
0 ... 0
1 ... 0
1 ... 0
0 ... 1

1 1 year Female CA 7050 100
2 2 years Female TX 7871 150
3 3 years Male TX 300
4 3 years Female 7871 310
5 1 year Male CA 200

Refine
Duplicates
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Example of Data Catalog Update and Data Cleaning
Salary dataset: comma-separated CSV file

Target feature: "Salary"

Experience Skills Gender Address Salary

12 Months SQL,Java F 7050 CA 100

two years JavaScript Female TX 7871 150

36 months C/C++,.Net M Texas 300

3 Years JS,CPP,SQL Female 7871 310

one Year Python Male CA 200

2 Years C#,Java 0 TX 175

Raw Dataset
Clean Dataset

# Experience Gender State Zip C++ ... Python Salary
0 ... 0
0 ... 0
1 ... 0
1 ... 0
0 ... 1

1 1 year Female CA 7050 100
2 2 years Female TX 7871 150
3 3 years Male TX 300
4 3 years Female 7871 310
5 1 year Male CA 200

Column Name % Distinct Feature Type Samples
Experience 100 Sentence [12 Months, two years, ...]
Skills 100 Sentence ["Python,Java", ...]

Gender 60 Categorical [F, Female, M]

Address 100 Sentence [7050 CA, TX 7871, CA, ...]
Experience 60 Categorical [1 year, 2 years, 3 years]
Skills -- List [SQL, Java, C++, ...]

Gender 40 Categorical [Male, Female]

State 40 Categorical [CA, TX]
Zip 40 Categorical [7050, 7871]

Da
ta

Ca
ta
lo
g

Refine
Duplicates

Update
Data Catalog
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Experiment Setup

Real-world Datasets (20 datasets):
• single/multiple tables,
• few/many samples,
• small/large number of features, and
• clean/dirty data.

Comparing Systems:
• LLM-based Systems: CAAFE, AIDE, AutoGen
• AutoML Tools: H2O, Flaml, Auto-Sklearn, AutoGluon
• AutoML-based Workflows: Data cleaning w/ SAGA and Learn2Clean, and data
augmentation w/ ADASYN
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Performance Comparison (LLM = Gemini-1.5)

CatDB (Orig Data) CatDB (Refined Catalog) CAAFE TabPFN CAAFE RandomForest AutoML w/Preprocessing
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(c) Yelp

n Deduplication Ü Removes duplicates, balances labels.
n Categorical Features Ü Fixes formatting, transforms complexity.
n Feature Refinement Ü Drops constant/misread features, preserves distribution.
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Cost and Runtime Comparison (10 iterations)
CatDB CatDB Chain CAAFE RandomForest CAAFE TabPFN AIDE AutoGen
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(c) Volkert

n Cost Efficiency: n Runtime Speedup:
l AIDE & AutoGen use Hank-crafted prompts. l CatDB achieve 8x-14x faster.
l CatDB consumes fewer tokens by projecting the Data Catalog. l AIDE & AutoGen consider only execution time.
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Outlier and Missing Value Injection (Gemini-1.5)

CatDB CAAFE RandomForest Flaml Autogluon AutoSklearn H2O
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Robustness Ü CatDB maintains high performance even with increasing
missing values and 5% outliers.
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Conclusions
Data Catalog Integration Ü Use metadata & rules for tailoring pipelines.
Catalog Refinements Ü Enhance catalogs to guide ML pipeline creation.
Prompt Chaining Ü Sequence prompts to optimize generation.
Error Handling Ü Validate, fix with knowledge base for reliable pipelines.
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